
w
w

w
.j

B
ill

in
g
.c

o
m

The Open Source Enterprise Billing System

Extension Guide

Copyright 2011 Enterprise jBilling Software Ltd. Page 1

http://www.jbilling.com/

Copyright

This document is Copyright © 2004-2011 Enterprise jBilling Software Ltd. All Rights
Reserved. No part of this document may be reproduced, transmitted in any form or by
any means -electronic, mechanical, photocopying, printing or otherwise- without the prior
written permission of Enterprise jBilling Software Ltd.

jBilling is a registered trademark of Enterprise jBilling Software Ltd. All other brands and
product names are trademarks of their respective owners.

Author
Emiliano Conde and others

Revision number and software version
This revision is 3.0.0, based on jBilling 2.2.0

Copyright 2011 Enterprise jBilling Software Ltd. Page 2

Table of Contents

CHAPTER 1
ARCHITECTURE..7

The jBilling engine...8

Architecture Overview... 8

A tiered approach... 8

Overview... 8

Client tier... 9

Server tier.. 9

Database tier.. 9

Business Rules Plug-ins...10

Rules engine integration.. 10

Class parade... 11

Types..11

Processing flow... 13

CHAPTER 2
REPORTS TEMPLATES.. 15

Introduction...16

What is a report?.. 16

Report Parameters.. 18

GSP Template Page.. 19

Internationalization (i18n)..20

Example New Report..21

Define the report in the database..21

Adding Report Files... 22

CHAPTER 3
BUSINESS RULES PLUG-INS.. 23

Why plug-ins?... 24

The business rules plug-in architecture.. 24

How does it work.. 26

Copyright 2011 Enterprise jBilling Software Ltd. Page 3

Core Driven... 27

Event Driven Plug-ins...27

Schedule Driven or Scheduled Plug-ins..27

Simple Scheduled Tasks...28

Cron Scheduled Tasks..28

Plug-in categories..28

Plug-in types.. 33

Creating your own plug-ins... 46

Creating your own Scheduled Plug-in.. 47

CHAPTER 4
PAYMENT PLUG-INS...49

Integrating with payment gateways.. 50

Introduction.. 50

The PaymentTask interface.. 51

Implementation responsibilities... 52

Example..54

Testing.. 54

Deciding on a payment method... 55

Asynchronous payment processing... 55

Configuration... 56

Adding new parameters for asynchronous processing...58

CHAPTER 5
BILLING PROCESS PLUG-INS...59

Order filter.. 60

Invoice filter.. 60

Invoice composition.. 61

Order period..61

Order processing: totals and taxes.. 61

Copyright 2011 Enterprise jBilling Software Ltd. Page 4

CHAPTER 6
NOTIFICATION PLUG-INS.. 63

Notifications...64

Payment gateway down alarm...64

CHAPTER 7
INTEREST PLUG-INS.. 66

Interest and penalties... 67

CHAPTER 8
INTERNAL EVENTS.. 68

Introduction...69

Plug-ins for internal events.. 69

Universal events-to-rules plug-in...70

Creating your own event processing plug-in.. 70

Events... 70

List of events.. 71

Implementing your own plug-in...75

Example: “Hello Payment”..75

CHAPTER 9
RULES AND BRMS..78

Extending through rules...79

Introduction.. 79

Drools... 79

Rule based plug-ins.. 80

Deployment..80

Creating new rules.. 82

Anatomy of a rule...82

Rules for business users... 84

Steps for rules adoption... 85

Item relationship management.. 86

Overview.. 86

RulesItemManager... 87

Copyright 2011 Enterprise jBilling Software Ltd. Page 5

Data Model...88

Helper Services.. 89

Example..90

Pricing..90

Overview.. 90

RulesPricingTask..91

Data Model...92

Helper Services.. 92

Example..93

Universal events-to-rules plug-in...93

Event Subscription Configuration..94

Rules...94

Copyright 2011 Enterprise jBilling Software Ltd. Page 6

Chapter 1

Architecture

An overview of jBilling's design

Copyright 2011 Enterprise jBilling Software Ltd. Page 7

The jBilling engine
It is easy to make a complex design to solve a complex problem. The challenge is to
produce a simple design that would address complex problems, like we often face for
billing requirements. This document will try to show that the design behind jBilling is
simple, and yet the result is an enterprise billing system. Anybody with knowledge of
Java should be able to read and understand this document in less than half an hour.
After that, you can start modifying and extending jBilling. To quote Martin Fowler “I like to
structure documentation as prose documents, short enough to read over a cup of coffee,
using UML diagrams to help illustrate the discussion”. Coffee is not good for you, so I
won't go along with that. Try chocolate milk instead.

The remaining chapters go into the details of each extension point or major module. You
shouldn't need to read them all in every case. It all depends on what is that you are
planning to do. It is intended to be more of a reference that goes a little bit more in
details over the key internals of the system.

After that, you might have some questions, or would like to bounce some of your ideas
off someone else. Send an email to the users list of find me in the forums!

Before you start, you should have a basic understanding on how jBilling works from a
user perspective. At the very least, read and follow the 'Getting Started' guide (find it in
the documentation section). Experiment and get to know well the specific part of the
system that you will be changing. So for example, if you are going to make changes to
payments, create a new payment and see how it affects an invoice.

Architecture Overview

A tiered approach

Overview

The most significant characteristic of jBilling's architecture is the 3 tiers layout:

● Client: Deals with all the interaction with the user (user interface). It only
communicates with the server tier, never directly to the database tier. It does not
have any business logic.

● Server: It is the holder of the business logic and the only tier that talks with two
other tiers: client and database.

● Database: A RDBMS engine that holds all the data. It only holds data, there are
no store procedures or any other kind of code, let alone business logic here. Only
the server tier gets to access the database.

I picked very standard names to describe these tiers, but this could lead to confusion so
I better expand on this. By client I don't mean the browser running on the user's PC, but
the web server dealing with it. The server is actually an application server capable of
serving Java servlets (Tomcat, Jetty, etc). These terms are more logical that physical. In
practice, You could have one server per tier, or you can have them all in one box; you
could even have a cluster of servers for any of the tiers. Also, I put the components

Copyright 2011 Enterprise jBilling Software Ltd. Page 8

responsible of how the data is accessed in the database tier, although they are deployed
in the application server.

Client tier

The main factor in this tier is Struts (http://struts.apache.org/). This is an implementation
of the model-view-controller design pattern for web-based applications written in Java.
So yes, our users access the system using a web browser, which connects to a web
server where our JSPs are deployed. All the requests are handled by the Struts
controller, then forwarded to Actions that eventually call the server to get something
done.

Struts also help us with internationalization (i18n), validation, page layout (tiles) among
other things. We've got to be grateful to the Jakarta folks!

The client tier, or GUI, is old and limited in functionality. Most of the effort in the past
years went to improve the server and expose that functionality through an API. In is very
common to deploy jBilling as a server only component, integrated with other systems
that provide their own GUIs to interact with jBilling.

Choosing Struts 1 in 2002 was a good idea, it was the latest and greatest. And open
source. Since then, AJAX has arrived and endless number of MVC implementations and
frameworks (perhaps too many). Doing a complete rewrite of jBilling's GUI, using a
modern framework is already in the design stages.

Server tier

jBilling is a Java EE application that relies on the Spring Framework for enterprise
services such as demarcations of transactional boundaries, integration with Hibernate,
JMS, etc. All it needs is a Java web server to run. It would be possible to run it outside
any application server, as a simple Java application as well (no GUI or web services).

It is worth noting that initially, jBilling started as an EJB application that run only on
JBoss. Session beans, entity beans, etc were all over the code. None of this is now the
case, jBilling is today a Spring application, but this start in the EJB world has left 'scars'
in the code.

The key frameworks in use are Spring and Hibernate, and the standard deployment will
use Tomcat and ActiveMQ

The server tier is where all the 'work' gets done. All the business logic is in this tier. It
receives requests from the user interface or from web services, and responds to them by
running some business logic code and interacting with the database.

Database tier

The first rule to keep in mind regarding the database is that we want to stay vendor
independent. This means no specific functions or extensions of SQL that are specific to
a database engine. Initially, jBilling ran on PostgreSQL, which is pretty powerful and
open source. It is quite easy to run jBilling in any other engine that supports ANSI SQL.

Copyright 2011 Enterprise jBilling Software Ltd. Page 9

http://struts.apache.org/

There are a few ways to access the database: through Hibernate persisted classes,
Hibernate HQL queries, Hibernate criteria queries, and through JDBC calls. Hibernate is
the preferred way to access the database. I don't see any need to call JDBC directly.
Still, you will find a lot of JDBC queries in the code. These are read only queries, no
modifications are done this way. Direct JDBC is one of those 'scars' that EJB left on
jBilling: entity beans produce locks and are slow. In many cases, I had to manually write
SQL to overcome this problem.

The preferred query method is Hibernate criteria, but only when the query is not very
complex. Then, use HQL. I know that there is an endless debate on this point. This is a
good example where there's no point debating... it is just a preference, like coffee or
chocolate milk.

Business Rules Plug-ins
How a company does its billing depends on a huge number of factors. The country
where it operates is one, since it affects taxes, accounting rules, etc. The industry it
belong is also a key factor: a phone company is more likely to bill its customer like its
competition does, not like a golf club charges its members. But still, business rules can
change a lot from company to company just because they prefer to do it differently. Add
to that the fact that all these rules change constantly.

How do we face this endless list of requirements? We use the 'Plug-in' design pattern,
where we identify high level common requirements for a billing system, and we provide
'hooks' for areas that are change from company to company. We also provide a default
implementation for all these hooks, so jBilling is both a billing application framework and
a fully operational billing system.

These hooks are design as Java interfaces. jBilling only knows about these interfaces, it
doesn't know about the actual implementations. So when it tries to get on-line
authorization for a credit card payment, it doesn't know which payment processor is
being used and how to communicate with it. It only calls 'process' on a Java object
implementing the interface 'PaymentTask'. All the configuration of these plug-ins is in the
database, so it is easy to change without any recompilation.

You can extend a default implementation, or you can implement from scratch one of the
interfaces. In any case, you are extending jBilling to fit your needs without modifying
jBilling itself.

Rules engine integration
Plug-ins are great, but you don't want to have to write Java code every time a new
promotion, discount or plan changes. There is another level of business rules that need
to be expressed in a different way.

Writing fine grained business rules in Java is just silly. Worse is to do it in XML. There
are already languages and frameworks to deal with this. We picked Drools as the only
one that fits both the maturity/functionality and the open-source bills.

Thus, many major modules in jBilling like the mediation or rating rely heavily on external
business rules to know how to do things. In other cases, you have many
implementations of the same plug-in type, some based on external rules and some that
are just plain Java.

Copyright 2011 Enterprise jBilling Software Ltd. Page 10

It is important to note that jBilling itself, the core, does not use rules and holds no
dependencies with Drools. All the interaction with the rules engine is done through plug-
ins.

Class parade

Types

Eventually, any Java system is just a bunch of classes, and jBilling is no exception. Still,
not all classes are created equal. In jBilling there are definitely grouped by their roles.
You can tell what kind of type a class just by its name. By going over the major groups I
believe you'll have an idea of how the system was design. Then, I'll present a sequence
diagram to illustrate an example.

Actions

This client-tier classes extend Struts Action class to process requests coming from the
user interface. In most cases, they call a Spring managed bean in the server side to
pass the user's information to the classes responsible of the business logic.

Class name: nameAction

Example: com.sapienter.jBilling.client.payment.MaintainAction

Business Logic (BL)

These are POJOs where all the business logic lives. In most cases, these classes act
upon one row in the database through a persisted bean that is a member of the class.
You will use a BL class to find, create update or delete artifacts such as a payment,
order or invoice, and to execute business logic related to them.

Class name: nameBL

Example: com.sapienter.jBilling.server.payment.PaymentBL

Let's take a look to a simplified version of this class. Note the association to PaymentDTO
that represents one persisted bean, thus, one row in the database.

Let's see an example in a context. The user clicks on a payment to see its content. After
the click, you know the ID of the payment. So you can do just this:

PaymentBL myPayment = new PaymentBL(paymentId);

showPaymentDetails(myPayment.getDTO());

This will fetch the payment from the database and populate a Java bean with its content.
This bean will be received by the method showPaymentDetails.

Pluggable Tasks

Copyright 2011 Enterprise jBilling Software Ltd. Page 11

These are the interfaces and concrete implementations of the business rules plug-ins
described in the previous section. Here there is a brief list of the types of plug-ins. For a
complete list an through overview of how plug-ins work, see the plug-ins chapter.

● InvoiceCompositionTask: Creates an invoice document based on the orders
and/or invoices selected by the billing process.

● InvoiceFilterTask: Has the logic to decide if an older invoice should be carry over
to a new invoice.

● NotificationTask: Knows how send a notification to a customer (for example,
sending an email). This allows for other notification types such as fax, automated
phone call, etc.

● OrderFilterTask: Decides if an order should be included in an invoices for the
current billing process or not.

● OrderPeriodTask: Decides how many periods an order should include in an
invoices.

● OrderProcessingTask: It calculates the total of an order when it is created, and
might add some additional processing, like calculating sales taxes such as VAT.

● PaymentInfoTask: Decides how a customer will pay.

● PaymentTask: Submits a payment to a payment processor to get on-line
payments for credit cards or other electronic payment methods.

● PenaltyTask: Calculates potential penalties for customers that are late with their
payments.

Class name: nameTask

Example:
com.sapienter.jBilling.server.pluggableTask.PaymentAuthorizeNetTask

Session Beans

We use the facade pattern, wrapping components and exposing each of them as a
Spring managed bean. These classes act as a 'bridge' between the client and the
business logic classes, this way implementing the session facade design pattern. They
shouldn't do much more than forwarding the calls, although some times some code
manages to grow inside them :).

An important consideration is that transaction demarcation happens only in this session
beans. When a client calls the server, a session bean receives the call and starts a
transaction. The same applies anywhere in the code when a new transaction is needed:
a bean is return by Spring who starts a transaction for us. We use only declarative
transaction management .

Class name: nameSessionBean

Example: com.sapienter.jBilling.server.payment.PaymentSessionBean

DB Persisted Beans

Copyright 2011 Enterprise jBilling Software Ltd. Page 12

All direct access to a single row in the database is done with Hibernate managed beans.
The result is that almost all database tables have an Hibernate annotated class as a
counterpart.

We use Hibernate associations extensively as well. Do you want to get the invoice lines
of an exiting invoice? It is as easy as invoice.getLines() and because we know that
an invoice doesn't have thousands and thousands of lines, it will perform just fine.

Having been an Oracle DBA in a previous life (got certified and everything), I keep a
close eye on how the database is being accessed to avoid performance problems down
the road.

All these Hibernate managed classes used to be EJB entity beans. You will find many
scar tissue, like helper methods to help with the migration.

A common complain is the name of these classes. Why DTO? Specially considering that
DTOs is a naming pattern that is used for other purposes. It is a poor choice of names, I
admit. In my defense I can say that they are transferring data (from the DB to the
application) and I do like having some kind of name for a class that, if I modify, I will be
modifying the database. I like better PaymentDTO than just Payment.

Class name: nameDTO

Example: com.sapienter.jBilling.server.payment.db.PaymentDTO

Processing flow

Let put all these pieces together with a simple example of a complete execution flow.
When the user is shown a list of payments, they can select one to see all its details.
We'll follow how the major classes interact together across tiers, starting with a
sequence diagram. It does show the old names from the Entity beans time, but for the
most part it still applies today:

● All starts with the user clicking on a payment row. That sends a request to the
web server with a parameter with the payment id to be displayed.

● The request is forwarded to an Struts Action class, in this case MaintainAction.
This class will make some validations, parse the request to extract the payment
id, locate the payment session bean from the Spring context and make the call.
No business logic here, since we are still in the client tier.

● The application server gets called through a session bean. In this case it only
create the PaymentBL object and call one of its methods. Literally two lines of
code. A transaction is started at this point using the declarative transaction
demarcation offered by Spring.

● PaymentBL is created using the constructor that takes an id as a parameter. It
can right away look for the Hibernate bean that represents this payment in the
database.

● A new DTO representing this payment is created.

● This DTO is then passed all the way back to the client tier, where it is placed in
the HTTP session.

Copyright 2011 Enterprise jBilling Software Ltd. Page 13

● The Action ends by forwarding the user to the payment view page. This JSP
knows how to display a payment based on the DTO bean present in the session.

Copyright 2011 Enterprise jBilling Software Ltd. Page 14

Chapter 2

Reports templates

Extracting real-time data

Copyright 2011 Enterprise jBilling Software Ltd. Page 15

Introduction
Behind every jBilling 3.0 report is a Jasper Report file that queries the database and
formats the information into a readable report. These reports can include logos, charts,
and other graphical elements to provide information to the user in a clean and concise
manner.

You do need to be familiar with the database tables of the jBilling schema and SQL in
order to write a new report. Last but not least, you need to be familiar with Jasper Report
JRXML files and preferably, the Jasper iReport design tool.

What is a report?
As mentioned before, a report is a Jasper Report file with a query that jBilling loads and
runs against the database to produce a readable report. In-order to accomplish this task,
all reports must be located in an appropriate place in the file system so they are
accessible to jBilling.

You tell jBilling a report exists by creating an entry in the REPORT database table and
giving it an appropriate type id, report name and the file name of the Jasper Report.
Every report must belong to a report type. These types are used for organizational
purposes in the jBilling menu system, and also to dictate where the Jasper Report file
can be found in the file system.

A Jasper Report file must be located within the correct folder on the “resources/reports/”
path to be used with jBilling. Each report type has its own sub-folder within the
“resources/reports/” path named the same as the report type.

In addition to the Jasper Report file, there is also a GSP (Groovy Server Pages)
template page that is used to display the appropriate input fields and UI elements for
each report when it is viewed in jBilling. As with the Jasper Report file, the report type
dictates the path to the template page, and each report type has its own sub-folder.

Type Report Path UI Template Path

1. Invoice resources/reports/invoice grails-app/views/report/invoice

2. Order resources/reports/order grails-app/views/report/order

3. Payment resources/reports/payment grails-app/views/report/payment

4. User resources/reports/user grails-app/views/report/user

Copyright 2011 Enterprise jBilling Software Ltd. Page 16

Lets review the REPORT database table and how it relates to the Jasper Report file and
the GSP template page.

Column Name Description

ID A unique identifer for this report.

TYPE_ID Report type ID that refers to one of the types in the list above. The
report type dictates the list in which the report appears in the
jBilling UI, and where to find the Jasper Report file and GSP
template page.

NAME A unique name for this report that should only contain letters,
numbers and underscores – e.g., “total_payments”.

FILE_NAME The file name of the compiled .jasper report file as it can be found
in the resources/reports/type/ folder – e.g., “total_payments.jasper”

OPTLOCK Version of the report. Currently not used by jBilling. Set to “0” for
new reports.

Jasper Report file location:

The path to the Jasper Report file is built by adding the report FILE_NAME to the path of
the report type sub-folder, for example:

Report type: Payment - “resources/reports/payment/”
File name: “total_payments.jasper”

Jasper Report file = “/resources/reports/payment/total_payments.jasper”

GSP template page location:
The path to the GSP template page is built by adding the report name to the path of the
report-type sub-folder and adding a .gsp suffix, for example:

Report type: Payment - “grails-app/views/report/payment”
Report name: “total_payments”

GSP template page = “grails-app/views/report/payment/_total_payments.gsp”

*Note that Grails denotes a template file by prefixing it with an underscore.

Copyright 2011 Enterprise jBilling Software Ltd. Page 17

Report Parameters

Every report has a collection of parameters with a name and a type. The type ensures
that the parameter value is stored and passed on to the reporting engine in the correct
format so that no conversion is necessary to parse the value in the Jasper Report
JRXML.

The parameter will be passed to the reporting engine by name, meaning you can
reference it in the Jasper Report JRXML using the parameter keyword and name in the
format $P{myParameter}.

Column Name Description

ID A unique identifier for this report parameter.

REPORT_ID The unique identifier of the report that this parameter belongs to.

DTYPE Musb be one of “integer”, “date”, or “string”. This denotes the type
of object holding the value that is passed to Jasper Reports.

• “integer” = java.lang.Integer

• “date” = java.lang.Date

• “string” = java.lang.String

NAME Parameter name to be passed to Jasper Reports. The parameter
value can be referenced by this name in the Jasper Report JRXML
file.

Global parameters
These report parameters are passed into the reporting engine for every report:

• REPORT_LOCALE - The local of the user running the report. Used for formatting.
• SUBREPORT_DIR - The path in the file system of this reports sub-folder.
• entity_id - The entity (company) ID of the user running the report.

Copyright 2011 Enterprise jBilling Software Ltd. Page 18

GSP Template Page

As mentioned above, the GSP page templates can be found in the jBilling source code
in a sub-folder reflecting the type of the report. The template name itself must match the
report name so that it can be rendered when the report is selected from the menu.

The GSP page templates are only used to provide the input elements to gather
parameters for each report. By having a template for each report, you can ensure that
only relevant input fields and options are presented to the user.

The simplest reports require no parameters and have templates that only serve to tell
the user that there are no parameters to be entered:

<div class="form-columns">
<p>

<g:message code="report.no.parameters"/>
</p>

</div>

More complex GSP page templates provide a form that can contain input fields, drop-
down selection menus and date controls to allow the user to enter their own parameters
values. To make things simple the report engine will extract entered values from the form
by name. You only need to make sure the “name=” attribute of the field matches the
report parameter name.

Parameters:

• Start Date (type: “date”, name: “start_date”)
• Number (type: “integer”, name: “number”)

<div class="form-columns">
<g:applyLayout name=”form/date”>
 <content tag=”label”>Start Date</content>
 <content tag=”label.for”>start_date</content>
 <g:textField class=”field” name=”start_date”/>
</g:applyLayout>

<g:applyLayout name=”form/select”>
 <content tag=”label”>Number</content>
 <content tag=”label.for”>number</content>
 <g:select name=”number” from=”[1, 2, 3]”/>
</g:applyLayout>

</div>

For more examples of input forms, take a look at the existing templates in the grails-
app/views/report/ folder of the jBilling source code.

Copyright 2011 Enterprise jBilling Software Ltd. Page 19

Internationalization (i18n)

Internationalization of reports only covers the report name in jBilling menus, the
parameter names and a brief description shown in the report view. To localize the report
itself youll need to refer to the Jasper Report documentation and make use of the
passed REPORT_LOCALE parameter.

Report Name and Parameters
The text shown for report parameters in the jBilling report view can be localized by using
the built-in grails g:message tag, and adding the appropriate text to the
messages.properties resource bundle (located in the grails-app/i18n/ folder) for your
locale.

GSP template page:

<g:applyLayout name=form/date>
<content tag=”label”>
<g:message code=”start.date”/>
</content>
...

</g:applyLayout>

messages.properties:

start.date=Start Date

Report Description (optional)
Reports can be can be given an optional internationalized description in different
languages by adding entries to the jBilling INTERNATIONAL_DESCRIPTION database
table using the ID of the target language. This is entirely optional, if there is no
description set for a report then the “description” of the report shown in the report view
will be left blank.

Example description for report ID 4:

insert into international_description
(table_id, foreign_id, psudo_column, language_id, content)
values
(100, 4, 'description', 1, 'Total payment amount received.');

Available languages can be determined by examining the LANGUAGE database table.

Copyright 2011 Enterprise jBilling Software Ltd. Page 20

Example New Report

Define the report in the database

Report

Type: Payments - ID 3
Name: “total_payments”
File Name: “total_payments.jasper”

insert into report (id, type_id, name, file_name, optlock)
values (4, 3, 'total_payments', 'total_payments.jasper', 0);

Report Parameters

1. start_date type “date”
2. end_date type “date”
3. period type “integer”

insert into report_parameter (id, report_id, dtype, name)
values (5, 4, 'date', 'start_date');

insert into report_parameter (id, report_id, dtype, name)
values (6, 4, 'date', 'end_date');

insert into report_parameter (id, report_id, dtype, name)
values (7, 4, 'integer', 'period');

International Description

insert into international_description
(table_id, foreign_id, psudo_column, language_id, content)
values
(100, 4, 'description', 1, 'Total payment amount received.');

Mapping Report to a Description

insert into entity_report_map (report_id, entity_id)
values (4, 1);

Copyright 2011 Enterprise jBilling Software Ltd. Page 21

Adding Report Files

Add a new Jasper Report JRXML file:

descriptors/reports/payment/total_payments.jrxml

You can compile the JRXML file using the “grails compile-reports” command from the
jBilling source code. Alternatively, you can compile the file from within the Jasper
iReports designer and move it to:

resources/reports/payment/total_payments.jasper

Add a new GSP template page:

grails-app/views/report/payment/_total_payments.gsp

<div class="form-columns">
<g:applyLayout name=form/date>
 <content tag=”label”>Start Date</content>
 <content tag=”label.for”>start_date</content>
 <g:textField class=”field” name=”start_date”/>
</g:applyLayout>

<g:applyLayout name=form/date>
 <content tag=”label”>End Date</content>
 <content tag=”label.for”>end_date</content>
 <g:textField class=”field” name=”end_date”/>
</g:applyLayout>

<g:applyLayout name=form/select>
 <content tag=”label”>Period</content>
 <content tag=”label.for”>period</content>
 <g:select name=”period” from=”[1, 2, 3]”/>
</g:applyLayout>

</div>

Add the report name to the messages.properties bundle:

total_payments=Total Payments

Copyright 2011 Enterprise jBilling Software Ltd. Page 22

Chapter 3

Business Rules Plug-ins

The key to extending jBilling

Copyright 2011 Enterprise jBilling Software Ltd. Page 23

Why plug-ins?
A billing system needs to face a very difficult challenge: it needs to work following a
company's business rules, and different companies have different business rules. Some
industries work with prepayments, other get paid after the service is given. Every country
has different tax and accounting rules, and even when many factors are the same:
industry, geographical location, etc. still companies decide to work differently.

jBilling tries to face this by allowing its key objects to be parametrized. Orders can be
prepaid or postpaid. But that is not enough: there is need for further flexibility.

A plug-in is a design pattern that tackles this problem. The basic idea is to identify those
areas of the billing system that can be subject to a lot of different requirements. Then, we
encapsulate them into objects and design the system to find out only at run time what
objects needs to use. The configuration of jBilling (stored in the database), is what
determines the class name that will be used.

One instance of jBilling can server multiple companies, and each company doesn't
'know' about the other ones. We can have one instance running for a company in Italy
and another one in Canada. When the billing process runs, the right plug-in is plugged to
calculate the taxes, which are very different between Italy and Canada.

The business rules plug-in architecture
There are many places that need their business logic encapsulated as a plug-in. Each of
this 'areas' are represented as a 'plug-in category'. Then each category maps to an
specific Java interface which then can have many implementations. The
implementations are named 'plug-in types'. So categories are interfaces and types are
concrete classes.

Copyright 2011 Enterprise jBilling Software Ltd. Page 24

Plug-ins are named in the code 'pluggable tasks'. Let's take a look to how the
configuration data of the plug-in engine is represented as tables:

From the previous diagram, we can make some statements:

● Categories are Java interfaces, and they have system wide scope
(pluggable_task_type_category).

● Each category (interface) can have multiple
implementations. These will be Java classes , their
scope is also system wide (pluggable_task_type).

● Each company (entity) might use a different class to
do the same thing. What each company is using is
mapped by pluggable_task table.

Copyright 2011 Enterprise jBilling Software Ltd. Page 25

Illustration 1: Database tables to support pluggable tasks

You should not need to
directly modify the
contents of these

tables. This can be
done through the GUI
by clicking on 'System'

and then 'Plug-ins'.
See the user guide for

more information.

● Plug-ins have parameters. Many companies might share the same class to deal
with a business rule, but each can have its own parameters
(pluggable_task_parameter).

Let's put all this in an example. A payment processor is a plug-in, it handles how to get a
credit card payment cleared by a payment gateway. In our example, we'll have three
companies (red, blue, yellow) and two payment gateways (big and small). Red and blue
are going to use the 'big' gateway, while yellow will use the small one.

The configuration will look like:

● The category is already set by the initialization data of jBilling. In this case, the
row is the ID 6 that declares the interface 'PaymentTask'.

● For the type, we will have two classes, one for each payment processor.

● In pluggable_task, we will have three rows, one for each company. Two of these
rows point to the same type, because companies red and blue both use the 'big'
gateway.

● Each row in pluggable_task will have its own parameters in
pluggable_task_parameter. Here is where data like the user name and
password to use the payment gateway goes. With it, we can give company red
its own credentials to use the big gateway, and the same thing goes for blue.

How does it work

In jBilling, originally, plug-ins were tasks which were only called from specific points
within the jBilling system. For example, the Notification Task. These tasks were not
scheduled or schedulable and for that matter could not even handle or respond to
events. Later on, new plug-ins or tasks were added that could be hooked to Events.
There plug-ins were 'Event aware' and got invoked as a result an Event. A full
description of the jBilling Event architecture can be understood in Chapter 8 Internal
Events.

Today, Plug-ins or tasks may not be explicitly called by the code but the same can be
scheduled as a Quartz job. At the time of system startup, these plug-ins or Pluggable
Tasks that are already configured, are pulled from the database and scheduled as a
Quartz Job depending on each plug-in's parameter values.

Therefore, today, the jBilling system has three varieties of plug-ins. There are also
called as Pluggable Tasks, stressing their extensibility, and can be classified as below:

1. Core driven - These are the original jBilling plug-ins or tasks that are called from
various locations within the jBilling system

2. Event driven – These are the plug-ins that subscribe to one or more jBilling Event
or a custom jBilling Event

3. Schedule driven – The plug-ins which can be scheduled based on parameters
like date, time etc. or a Cron expressions fall under this category

Copyright 2011 Enterprise jBilling Software Ltd. Page 26

Core Driven

These are some of the originally developed plug-ins that belong to the core of the jBilling
system. These are invoked or called from various points within the code depending on
their use and functionality.

For Example, Notification Task (INotificationSessionBean) can be called on various
places like during Invoice generation, successful payment or an order being placed.

Other notable examples of Core driven plug-ins are Mediation Plug-in, Payment
Processor and the Interest plug-in.

Event Driven Plug-ins

These plug-ins act as handlers for a jBilling Event by subscribing to one or more Events
(Refer Chapter 8 Internal Events). The Plug-in class defines a process method that
performs the business-logic of the plug-in. As a plug-in writer, you would be responsible
for subscribing the right events that need to be processed by performing the
encapsulated business logic in this method.

As an example, the FileInvoiceExportTask performs the task of writing new Invoices
to an export file. Therefore, this plug-in subscribes to the NewInvoiceEvent. Whenever,
a new Invoice is created within the jBilling system, the NewInvoiceEvent is fired. The
jBilling system handles the process of invoking the subscribing
FileInvoiceExportTask class in this case.

Schedule Driven or Scheduled Plug-ins

Scheduled Plug-ins are Java classes within the jBilling system that extend from abstract
class ScheduledTask. These classes may contain any business logic that is required to
be executed at an instance of time or period, which may be repeatable or non-
repeatable. Once scheduled, it will be the system's responsibility to execute these
classes at the designate time and interval.

Like all plug-ins, Scheduled plug-ins can take 'pluggable parameters' as described in the
'plug-in architecture' in the previous section. Depending on the type of parameters, the
Scheduled plug-in can further be classified as Simple Scheduled Tasks and Cron
Scheduled Tasks.

Copyright 2011 Enterprise jBilling Software Ltd. Page 27

Simple Scheduled Tasks

Simple Scheduled Tasks are instances of an abstract Java class
AbstractSimpleScheduledTask. These tasks may require following parameters for
scheduling namely:

• Start Time - Start time for the task in yyyyMMdd-HHmm format

• End Time – End time for the task in yyyyMMdd-HHmm format

• Repeat – A number to represent the number of times this task should repeat,
default is infinite times

• Interval – Hours between two schedules of execution; default is 24 hours

A Simple Scheduled Plug-in may also be a “backward compatible” for scheduling
purposes. This means that certain tasks/processes or plug-ins that were originally
scheduled via jbilling.properties configuration may also be implemented as a Simple
Scheduled Plugin and jBilling may continue to schedule them based on the prior
configurations. These plug-ins are instances of an abstract Java class
AbstractBackwardSimpleScheduledTask.

An example of the Simple Scheduled Task is the BillingProcessTask. This task runs
the Billing Process within the jBilling system. The BillingProcessTask is also an
example of AbstractBackwardSimpleScheduledTask.

Cron Scheduled Tasks

Cron Scheduled Tasks are instances of abstract Java class AbstractCronTask. These
tasks can be scheduled using a Cron expression. Therefore, there is an additional
flexibility and control that comes with a cron expression and the same can be put to
good use for suitable business purposes.

Plug-in categories
Categories are predefined in jBilling. They are associated with an area of the system
that was intended to be easily extended. For example, which order should go into an
invoice. This could be a simple or very complex algorithm, and can vary a lot from
company to company, so there is a plug-in category to allow the implementation of this
logic in a way that keeps it encapsulated and easy to plug-in to jBilling.

The following is a list of plug-in categories. It includes a brief description of each as an
overview of them. To fully understand when the category is used and for what, it is
necessary to review an implementation. These are explained in the remaining chapters.

ID 1

Copyright 2011 Enterprise jBilling Software Ltd. Page 28

Name Order Processing

Interface com.sapienter.jBilling.server.pluggableTask.OrderProcessingTask

Description Calculates the total amount of an order, based on the order lines.
Typically extended to add 'automatic' items, such as taxes (VAT, GST,
etc).

ID 2

Name Order Filter

Interface com.sapienter.jBilling.server.pluggableTask.OrderFilterTask

Description Verifies if an order should be included in an invoice for the billing
process

ID 3

Name Invoice filter

Interface com.sapienter.jBilling.server.pluggableTask.InvoiceFilterTask

Description Decides if an invoice with outstanding balance should be carried over to
a new invoice.

ID 4

Name Invoice composition

Interface com.sapienter.jBilling.server.pluggableTask.InvoiceCompositionTask

Description Creates an invoice from a given order/s or invoice/s.

Copyright 2011 Enterprise jBilling Software Ltd. Page 29

ID 5

Name Order Period

Interface com.sapienter.jBilling.server.pluggableTask.OrderPeriodTask

Description Calculates the start and end dates of the period of an order to be
included in an invoice.

ID 6

Name Payment Gateway

Interface com.sapienter.jBilling.server.pluggableTask.PaymentTask

Description Submits a payment request to a payment gateway, usually to clear a
credit card or ACH payment.

ID 7

Name Notification

Interface com.sapienter.jBilling.server.pluggableTask.NotificationTask

Description Sends a notification to a customer.

ID 8

Name Payment method

Interface com.sapienter.jBilling.server.pluggableTask.PaymentInfoTask

Description Finds and selects the payment information prior to submitting a
payment.

Copyright 2011 Enterprise jBilling Software Ltd. Page 30

ID 9

Name Interests

Interface com.sapienter.jBilling.server.pluggableTask.PenaltyTask

Description Decides if a penalty (interest) is required for an overdue invoices, and if
so it calculates the amount.

ID 10

Name Gateway down alarm

Interface com.sapienter.jBilling.server.pluggableTask.ProcessorAlarm

Description Sends a notification if a payment gateway is down.

ID 11

Name User subscription status manager

Interface com.sapienter.jBilling.server.user.tasks.ISubscriptionStatusManager

Description Handles the state machine where the transitions from statuses is
defined.

ID 12

Name Asynchronous payment parameters.

Interface com.sapienter.jBilling.server.payment.tasks.IAsyncPaymentParameters

Description Can add additional parameters to help distribute load for asynchronous
payment processing.

Copyright 2011 Enterprise jBilling Software Ltd. Page 31

ID 13

Name Item Management

Interface com.sapienter.jBilling.server.item.tasks.IItemPurchaseManager

Description Executes adding an item into an order. It can decide to manipulate that
item or the order by, for example, adding other items.

ID 14

Name Item pricing (rating)

Interface com.sapienter.jBilling.server.item.tasks.IPricing

Description Gives an item a price.

ID 15

Name Mediation record reader

Interface com.sapienter.jBilling.server.mediation.task.IMediationReader

Description Reads records from a source for the mediation process.

ID 16

Name Mediation processor.

Interface com.sapienter.jBilling.server.mediation.task.IMediationProcess

Description Takes an event record and translates its fields to data jBilling can
understand: which items are involved, the customer responsible for the
event and the date of the event.

Copyright 2011 Enterprise jBilling Software Ltd. Page 32

ID 17

Name Internal Events.

Interface com.sapienter.jBilling.server.system.event.task.IInternalEventsTask

Description Plug-ins of this category will be called every time there is an internal
event. The plug-in can subscribe to only some events. The information
related to the event is passed to the plug-in as an Event object
parameter

ID 18

Name External Provisioning

Interface com.sapienter.jBilling.server.provisioning.task.IExternalProvisioning

Description Does communication with external provisioning systems. It receives a
command string it must interpret, communicates with the external
system, then returns a Map of response parameters.

ID 22

Name Scheduled Tasks

Interface com.sapienter.jbilling.server.process.task.IScheduledTask

Description Plug-ins of this type are scheduled as Quartz Job using a Quartz
scheduler at the time of Application startup. Depending on the type of
parameters, a Cron Expression or Start and Repeat instructions, this
plug-in can be a AbstractCronTask or an
AbstractSimpleScheduledTask.

Plug-in types
The default distribution of jBilling comes with several implementations of the plug-in
categories. These implementations are the plug-in types, which we review briefly in this
section.

Copyright 2011 Enterprise jBilling Software Ltd. Page 33

Use the following list to quickly find the class that you need. From there, you can study,
change or extend the class. We get into more details for each of the classes in the
remaining chapters.

Category 1

Name Default order totals

Class com.sapienter.jBilling.server.pluggableTask.BasicLineTotalTask

Description Calculates the order total and the total for each line, considering the item
prices, the quantity and if the prices are percentage or not.

Category 1

Name VAT

Class com.sapienter.jBilling.server.pluggableTask.GSTTaxTask

Description Adds an additional line to the order with a percentage charge to represent
the value added tax.

Category 1

Name Rules Line Total

Class com.sapienter.jBilling.server.order.task.RulesLineTotalTask

Description This is a rules-based plug-in (see chapter 7). It calculates the total for an
order line (typically this is the price multiplied by the quantity), allowing for
the execution of external rules.

Category 2

Name Order Filter

Class com.sapienter.jBilling.server.pluggableTask.BasicOrderFilterTask

Copyright 2011 Enterprise jBilling Software Ltd. Page 34

Description Decides if an order should be included in an invoice for a given billing
process. This is done by taking the billing process time span, the order
period, the active since/until, etc.

Category 2

Name Anticipated order filter

Class com.sapienter.jBilling.server.pluggableTask.OrderFilterAnticipatedTask

Description Extends BasicOrderFilterTask, modifying the dates to make the order
applicable a number of months before it'd be by using the default filter.

Category 3

Name Dummy Invoice Filter

Class com.sapienter.jBilling.server.pluggableTask.BasicInvoiceFilterTask

Description Always returns true, meaning that the invoice will be carried over to a new
invoice.

Category 3

Name No invoice carry over

Class com.sapienter.jBilling.server.pluggableTask.NoInvoiceFilterTask

Description Returns always false, which makes jBilling to never carry over an invoice
into another newer invoice.

Category 4

Name Invoice due date

Copyright 2011 Enterprise jBilling Software Ltd. Page 35

Class com.sapienter.jBilling.server.pluggableTask.CalculateDueDate

Description A very simple implementation that sets the due date of the invoice. The
due date is calculated by just adding the period of time to the invoice date.

Category 4

Name Default invoice composition.

Class com.sapienter.jBilling.server.pluggableTask.BasicCompositionTask

Description This task will copy all the lines on the orders and invoices to the new
invoice, considering the periods involved for each order, but not the
fractions of periods. It will not copy the lines that are taxes. The quantity
and total of each line will be multiplied by the amount of periods.

Category 4

Name Invoice composition task with pro-rating (day as fraction)

Class com.sapienter.jBilling.server.process.task.DailyProRateCompositionTask

Description When creating an invoice from an order, this plug-in will pro-rate any
fraction of a period taking a day as the smallest billable unit.

Category 5

Name Default Order Periods

Class com.sapienter.jBilling.server.pluggableTask.BasicOrderPeriodTask

Description Calculates the start and end period to be included in an invoice. This is
done by taking the billing process time span, the order period, the active
since/until, etc.

Category 5

Copyright 2011 Enterprise jBilling Software Ltd. Page 36

Name Anticipate order periods.

Class com.sapienter.jBilling.server.pluggableTask.OrderPeriodAnticipateTask

Description Extends BasicOrderPeriodTask, modifying the dates to make the order
applicable a number of months before it'd be by using the default task.

Category 5

Name Order periods calculator with pro-rating

Class com.sapienter.jBilling.server.process.task.ProRateOrderPeriodTask

Description This plug-in takes into consideration the field 'cycle starts' of orders to
calculate fractional order periods.

Category 6

Name Payment process for the Intraanuity payment gateway

Class com.sapienter.jBilling.server.payment.tasks.PaymentAtlasTask

Description Integration with the Intraanuity payment gateway.

Category 6

Name Test payment processor

Class com.sapienter.jBilling.server.pluggableTask.PaymentFakeTask

Description A test payment processor implementation to be able to test jBilling's
functions without using a real payment gateway.

Category 6

Copyright 2011 Enterprise jBilling Software Ltd. Page 37

Name CCF Router payment processor

Class com.sapienter.jBilling.server.payment.tasks.PaymentRouterCCFTask

Description Allows a customer to be assigned a specific payment gateway. It checks a
custom contact field to identify the gateway and then delegates the actual
payment processing to another plug-in.

Category 6

Name Currency Router payment processor

Class com.sapienter.jBilling.server.payment.tasks.PaymentRouterCurrencyTask

Description Delegates the actual payment processing to another plug-in based on the
currency of the payment.

Category 6

Name Email & process authorize.net

Class com.sapienter.jBilling.server.pluggableTask.PaymentEmailAuthorizeNetTask

Description Extends the standard authorize.net payment processor to also send an
email to the company after processing the payment.

Category 6

Name ACH Commerce payment processor

Class com.sapienter.jBilling.server.user.tasks.PaymentACHCommerceTask

Description Integration with the ACH commerce payment gateway.

Copyright 2011 Enterprise jBilling Software Ltd. Page 38

Category 6

Name Blacklist filter payment processor.

Class com.sapienter.jBilling.server.payment.tasks.PaymentFilterTask

Description Used for blocking payments from reaching real payment processors.
Typically configured as first payment processor in the processing chain.
See the “Blacklist” chapter from the “User Guide” document.

Category 6

Name Authorize.net payment processor

Class com.sapienter.jBilling.server.pluggableTask.PaymentAuthorizeNetTask

Description Integration with the authorize.net payment gateway.

Category 7

Name PDF invoice notification

Class com.sapienter.jBilling.server.pluggableTask.PaperInvoiceNotificationTask

Description Will generate a PDF version of an invoice to be included in batch for the
billing process.

Category 7

Name Email notifications

Class com.sapienter.jBilling.server.pluggableTask.BasicEmailNotificationTask

Description This implementation will send an email as a notification. It is the most
typical way to notify a customer.

Copyright 2011 Enterprise jBilling Software Ltd. Page 39

Category 7

Name Notification task for testing

Class com.sapienter.jBilling.server.notification.task.TestNotificationTask

Description This plug-in is only used for testing purposes. Instead of sending an email
(or other real notification), it simply stores the text to be sent in a file
named emails_sent.txt.

Category 8

Name Default payment information

Class com.sapienter.jBilling.server.pluggableTask.BasicPaymentInfoTask

Description Finds the information of a payment method available to a customer, given
priority to credit card. In other words, it will return the credit car of a
customer or the ACH information in that order.

Category 8

Name Payment information without validation

Class com.sapienter.jBilling.server.user.tasks.PaymentInfoNoValidateTask

Description This is exactly the same as the standard payment information task, the
only difference is that it does not validate if the credit card is expired. Use
this plug-in only if you want to submit payment with expired credit cards.

Category 9

Name Default interest task

Class com.sapienter.jBilling.server.pluggableTask.BasicPenaltyTask

Description Will create a new order with a penalty item. The item is taken as a

Copyright 2011 Enterprise jBilling Software Ltd. Page 40

parameter to the task.

Category 10

Name Email processor alarm

Class com.sapienter.jBilling.server.pluggableTask.ProcessorEmailAlarmTask

Description Sends an email to the billing administrator as an alarm when a payment
gateway is down.

Category 11

Name Default subscription status manager

Class com.sapienter.jBilling.server.user.tasks.BasicSubscriptionStatusManagerTask

Description It determines how a payment event affects the subscription status of a
user, considering its present status and a state machine.

Category 12

Name Dummy asynchronous parameters

Class com.sapienter.jBilling.server.payment.tasks.NoAsyncParameters

Description A dummy task that does not add any parameters for asynchronous
payment processing. This is the default.

Category 12

Name Router asynchronous parameters

Class com.sapienter.jBilling.server.payment.tasks.RouterAsyncParameters

Copyright 2011 Enterprise jBilling Software Ltd. Page 41

Description This plug-in adds parameters for asynchronous payment processing to
have one processing message bean per payment processor. It is used in
combination with the router payment processor plug-ins.

Category 13

Name Basic Item Manager

Class com.sapienter.jBilling.server.item.tasks.BasicItemManager

Description It adds items to an order. If the item is already in the order, it only updates
the quantity.

Category 13

Name Rules Item Manager

Class com.sapienter.jBilling.server.item.tasks.RulesItemManager

Description This is a rules-based plug-in (see chapter 7). It will do what the basic item
manager does (actually calling it), but then it will execute external rules as
well. These external rules have full control on changing the order that is
getting new items.

Category 14

Name Rules Pricing

Class com.sapienter.jBilling.server.item.tasks.RulesPricingTask

Description This is a rules-based plug-in (see chapter 7). It gives a price to an item by
executing external rules. You can then add logic externally for pricing. It is
also integrated with the mediation process by having access to the
mediation pricing data.

Copyright 2011 Enterprise jBilling Software Ltd. Page 42

Category 15

Name Separator file reader

Class com.sapienter.jBilling.server.mediation.task.SeparatorFileReader

Description This is a reader for the mediation process. It reads records from a text file
whose fields are separated by a character (or string). The mediation
module is covered in the document “Telecom Guide”.

Category 15

Name Fixed length file reader

Class com.sapienter.jBilling.server.mediation.task.FixedFileReader

Description This is a reader for the mediation process. It reads records from a text file
whose fields have fixed positions,and the record has a fixed length. The
mediation module is covered in the document “Telecom Guide”.

Category 15

Name JDBC Mediation Reader.

Class com.sapienter.jBilling.server.mediation.task.JDBCReader

Description This is a reader for the mediation process. It reads records from a JDBC
database source. The mediation module is covered in the document
“Telecom Guide”.

Category 15

Name MySQL Mediation Reader.

Class com.sapienter.jBilling.server.mediation.task.MySQLReader

Description This is a reader for the mediation process. It is an extension of the JDBC

Copyright 2011 Enterprise jBilling Software Ltd. Page 43

reader, allowing easy configuration of a MySQL database source . The
mediation module is covered in the document “Telecom Guide”.

Category 16

Name Rules mediation processor

Class com.sapienter.jBilling.server.mediation.task.RulesMediationTask

Description This is a rules-based plug-in (see chapter 7). It takes an event record from
the mediation process and executes external rules to translate the record
into billing meaningful data. This is at the core of the mediation
component, see the “Telecom Guide” document for more information.

Category 17

Name Automatic cancellation credit.

Class com.sapienter.jBilling.server.order.task.RefundOnCancelTask

Description This plug-in will create a new order with a negative price to reflect a credit
when an order is canceled within a period that has been already invoiced.

Category 17

Name Fees for early cancellation of a plan.

Class com.sapienter.jBilling.server.order.task.CancellationFeeRulesTask

Description This plug-in will use external rules (see the BRMS chapter) to determine if
an order that is being canceled should create a new order with a penalty
fee. This is typically used for early cancels of a contract.

Category 17

Name Blacklist user when their status becomes suspended or higher.

Copyright 2011 Enterprise jBilling Software Ltd. Page 44

Class com.sapienter.jBilling.server.payment.blacklist.tasks.BlacklistUserStatusTask

Description Causes users and their associated details (e.g., credit card number, phone
number, etc.) to be blacklisted when their status becomes suspended or
higher. See the “Blacklist” chapter from the “User Guide” document.

Category 17

Name Provisioning commands rules task.

Class com.sapienter.jBilling.server.provisioning.task.ProvisioningCommandsRulesTask

Description Responds to order related events. Runs rules to generate commands to
send via JMS messages to the external provisioning module.

Category 18

Name Test external provisioning task.

Class com.sapienter.jBilling.server.provisioning.task.TestExternalProvisioningTask

Description This plug-in is only used for testing purposes. It is a test external
provisioning task for testing the provisioning modules.

Category 18

Name CAI external provisioning task.

Class com.sapienter.jBilling.server.provisioning.task.CAIProvisioningTask

Description An external provisioning plug-in for communicating with the Ericsson
Customer Administration Interface (CAI).

Copyright 2011 Enterprise jBilling Software Ltd. Page 45

Category 18

Name MMSC external provisioning task.

Class com.sapienter.jBilling.server.provisioning.task.MMSCProvisioningTask

Description An external provisioning plug-in for communicating with the TeliaSonera
MMSC.

Category 22

Name Mediation Process Task

Class com.sapienter.jbilling.server.mediation.task.MediationProcessTask

Description A scheduled task to execute the Mediation Process.

Category 22

Name Billing Process Task

Class com.sapienter.jbilling.server.billing.task.BillingProcessTask

Description A scheduled task to execute the Billing Process.

Creating your own plug-ins
When the default types do not meet your requirements, you will need to create your own.
The most common result is an extension of a current type, or a new one that chains to
an existing type.

An example of an extension is “Anticipate order periods”. It extends the default type to
modify its behavior without having to redo the basic logic of it. A type that is meant to be
chained is the VAT type. It will be called after the standard type to add an additional
order line.

Copyright 2011 Enterprise jBilling Software Ltd. Page 46

Eventually, creating your own plug-in boils down to a new
Java class and some inserts in the database to configure
the system to use this class. As mentioned earlier, your
new plug-in will be implementing an existing jBilling
interface, or extending one of the existing types.

The first step for this is to identify the interface of the
plug-in category. Next, see which are the existing types for that category. The easiest
way to move forward is to take a look to the code of those types. Most of them are not
large pieces of code and can be well understood with the help of this document. The
following sections will go over those types in more detail.

As a general requirement, all types have to :

● Implement the interface that represents the plug-in category

● Extend the abstract class PluggableTask

Once you have the new Java class that represents your type, you will need to make
jBilling aware of this new type. This is done with one insert into the table
pluggable_task_type. The following are its columns:

id: This is a unique, sequential integer that identifies this type. You need to find out the
latest used number and add one to it:

select max(id)+1 from pluggable_task_type.

category_id: The id of the category that your type will belong to.

class_name: The full class name, including the package name. For example:

com.sapienter.jBilling.server.pluggableTask.BasicLineTotalTask

min_parameters: This in an integer with the minimum number of parameters that this
type takes. It is used only for validation. If the type is wrongly configured, with less than
this number of parameters, an exception will be thrown.

With your type registered in this table, you can proceed to add it to your company by
clicking on 'System', then 'Plug-ins'. The new type should be present in the drop down
list of classes. This configuration screen is explained in the 'System' section of the user
guide.

Creating your own Scheduled Plug-in

Creating a custom Scheduled Plug-in in jBilling is a multi-step process as below:

Copyright 2011 Enterprise jBilling Software Ltd. Page 47

Take advantage of the fact
that jBilling is open source,
all the source code is there

for you to study!

In is a good practice to avoid modifying the
default plug-in types. Ideally, you would either
extend one or create your own from scratch.

This would avoid running on a 'forked' jBilling
source base.

1. A custom Scheduled plug-in will be a new Java class that extends from one of
the following classes depending on the requirement or configuration:

i. AbstractCronTask

ii. AbstractSimpleScheduledTask

iii. AbstractBackwardSimpleScheduledTask

2. Provide customized implementation to the methods

i. Method getTaskName() - This method returns a string to identify the task
by a name

ii. Method execute() - This method is invoked by the Scheduler to execute
the custom logic for this Pluggable Task. This method receives a
JobExecutionContext, which can be used to retrieve the Plug-in
parameters configurable via the jBilling system

iii. Method getTrigger() - Depending on the type of the parameters used for
execution, the Quarts Scheduler requires an instance of SimpleTrigger
class. A Pluggable Task is scheduled using the Job Parameters and an
instance of Trigger class. A trigger requires a minimum of 2 properties;
Start Time and Repeat Interval. Start time is in the format yyyyMMdd-HHmm
where as the Repeat Interval is specified in seconds

3. Configure the plug-in into the jBilling system by providing necessary parameters.
jBilling Pluggable Tasks are configurable via the jBilling Web Interface as
mentioned in a previous section.

i. The AbstractSimpleScheduledTask requires a minimum of 4
parameters namely; start_time, end_time, repeat and interval between
repeats. If however, these parameters are not configured, they default as
follows: Start Date = Midnight 1st Jan, 2010, End Time = NULL meaning
Infinite, Repeat = Repeat Indefinitely, Interval = 24 Hours

ii. The AbstractCronTask requires a minimum of 1 parameter namely;
cron_exp for the Cron Expression. A Cron Expression takes the form of a
string with 5 to 6 numeric attributes separated by space. The definition of
a Cron Expression can be looked up in the Quartz Scheduler manual. If
not configured, this value defaults to "0 0 12 * * ?", which means, the task
will be scheduled to run at 12 noon everyday.

Copyright 2011 Enterprise jBilling Software Ltd. Page 48

Chapter 4

Payment plug-ins

Copyright 2011 Enterprise jBilling Software Ltd. Page 49

Integrating with payment gateways

Introduction
There are a number of payment gateways that provide payment processing services.
Each of them implement their own API and require a particular transport protocol.
However, a payment processor has one basic job to do: given a set of payment
information (typically, an amount and credit card details), process the payment and
return either success or failure.

In jBilling, we use the business plug-in architecture to implement payment processors.
This means that each payment processor plug-in is just an implementation of an
interface, and the configuration of which payment processor jBilling will use is stored in
the database. Thus, the billing administrator can switch from one payment processor to
another by just changing some rows in the database (which is done through the GUI),
without any code changes or restarting the application server.

There is also the need to allow fail-over functionality: if a payment processor is down, try
another one. Of course, a company would have to have an merchant account in more
than one payment gateway for this to be possible.

You need to create a new business rule plug-in class. As shown in the diagram, it will be
extending PluggableTask and implementing the interface PaymentTask. Since there
are many functions that are in common to pretty much any payment processor plug-in,
we have grouped those functions into a convenient (abstract) classes that implements
the interface. The class is PaymentTaskWithTimeout.

Copyright 2011 Enterprise jBilling Software Ltd. Page 50

The PaymentTask interface
Let's take a look to the interface PaymentTask:

public interface PaymentTask {

 boolean process(PaymentDTOEx paymentInfo)

throws PluggableTaskException;

 void failure(Integer userId, Integer retry);

 boolean preAuth(PaymentDTOEx paymentInfo)

throws PluggableTaskException;

 boolean confirmPreAuth(PaymentAuthorizationDTOEx auth,

Copyright 2011 Enterprise jBilling Software Ltd. Page 51

 PaymentDTOEx paymentInfo)

 throws PluggableTaskException;

}

A payment processor plug-in is nothing else than an implementation of the PaymentTask
interface. Typically, you will extend PaymentTaskWithTimeout and use all the helper
methods that it provides. This will help you to deal with the plug-in parameters and to
store the results of the payment in the database.

The main method for you to code is process, which takes a PaymentDTOEx object as a
parameter. This way, the processor is not necessary tied to a payment type, it can
process credit cards, direct debit or whatever the market offers for real-time payment.

This method (as well as the others) will return true or false, which indicates if the next
payment processor should be called by the business plug-in manager. This allows to fail-
over to other payment gateway if this one is unavailable. Thus, the return value has
nothing to do with the result of the payment, but if the payment was processed at all. In
other words, for result of success of failure, the return is false. If the communication with
the payment processor fails (server down, timeout, etc), return true.

The failure method
is called by the
business plug-in
manager after calling
process if the result of the payment was a failure. The concept behind this is that the
payment processor plug-in can then do something with the customer account, like
suspend it for example. This, though, has been obsoleted in favor of the ageing process,
so you can make an empty implementation of this method.

The method preAuth will do a credit card pre-authorization of a fixed amount. This is
usually done to verify that a credit cards is valid, without making a real charge. A
payment gateway will drop the charge after some number of days if this pre-
authorization is not confirmed by another call (also called 'capturing a pre-authorization').

Just like with process, we need to allow the caller to know if it is necessary to call
another processor because this one is unavailable by returning 'true' or 'false'.

The method confirmPreAuth will take a transaction done with 'preAuth' and confirm it
(aka 'capture'). With this, the original pre-authorization becomes a real charge to the
credit card. This method takes as a parameter the return value of preAuth.

A payment processor will typically need the transaction ID to perform a previously
authorized capture. In a way, this method does the same as process, but instead of
doing it from scratch, it does it from an existing transaction, which translates on a higher
chance that the process will be successful. The return value is the same as the previous
methods..

Implementation responsibilities
When implementing the PaymentTask interface, you need to follow these rules :

Copyright 2011 Enterprise jBilling Software Ltd. Page 52

Where should you place your plug-in? To follow the jBilling
standard, make your new class part of the following package:

com.sapienter.jBilling.server.payment.tasks

● Implement a timeout : When calling the payment processor, you can not take
forever. There has to be a maximum amount of time that, if reached, the result
should be that the payment processor is unavailable. This time out should be a
parameter of the plug-in (see next point).

● Use parameters : Do not hard code parameters like the user name and password
of the merchant account of the company using the payment processor. Use the
business rules plug-ins parameters instead, that are easily available by methods
in the parent abstract class PluggableTask.

● Update the payment with the result : When process is called, the payment object
needs to get the result id updated. Make a call to setResutId with the constants
Constants.RESULT_OK, Constants.RESULT_FAIL,
Constants.RESULT_UNAVAILABLE.

● Parse the processor results: Every processor will return the information about what
happen with the transaction in its own way. You will have to parse these results
and create an object PaymentAuthorizationDTO to hold this information. This
objects goes into the database, as explained later.

● Return true/false for process : Always return false, except when the processor is
not responding. This gives a chance to other processor to be called an attempt the
payment.

● Add the authorization result to 'paymentInfo' : The result of the
authorization will go into a PaymentAuthorizationDTOEx object, and this object
has to be added to the payment object you are getting as a parameter. This is to let
the caller now the details of the transaction, and translates to one simple line of
code:

paymentInfo.setAuthorization(authorizationDto);

● Create an authorization record in the database : It is important to log the
interaction with the payment processors. Here you need to create a record in a
table meant for this, and link this record to the payment record. Note that the
payment object is also updated with the authorization. This is easy because it is
all encapsulated in their own object. Here's an example for process:

// create the response object with the data returned by the

// payment processor

PaymentAuthorizationDTO response = ...;

Copyright 2011 Enterprise jBilling Software Ltd. Page 53

 // set the processor name

 response.getPaymentAuthorizationDTO().setProcessor("New
processor");

// update the payment with the response: success, failure

 // unavailable, etc.

 payment.setResultId(...); // parse from response

 // now create the db row with the results of this
// authorization call using a method from the parent

storeProcessedAuthorization(payment, response);

All the methods (process, preAuth and confirmPreAuth) have to create this
authorization record linked to the payment record.

Example
The best way to get started might be to take a look to existing payment processor plug-
ins. There are a few in the package:

com.sapienter.jBilling.server.payment.tasks

Any class with a name ending in 'Task' within that package is a payment processor plug-
in. It is a good idea to follow this naming convention for your plug-in.

Testing
Once you have finish coding the class, how do you test it? There are three steps for
testing:

1. Create a new plug-in type (this is your new class).

2. Configure your company to use that new type.

3. Submit a real-time payment.

To create a new type, you only need to add a new row to the PLUGGABLE_TASK_TYPE
table. See the database diagram in Chapter 2. The new type will belong to category 6,
which is the one for payment processing.

Here's an example of a type that takes at least 2 parameters:

insert into pluggable_task_type values(38, 6,
'com.sapienter.jBilling.server.payment.tasks.PaymentMyGatewayTask', 2);

Now to the company configuration. Login to the GUI as an administrator, then click on
'System' → 'Plug-ins'. You will need to remove any plug-in that belongs to category 6. By
default, that would be the 'PaymentFakeTask'.

Then, create a new plug-in entry and select you class from the drop-down menu (it
shows up now because of the previous step). Click on Submit so the changes are saved.
You most probably will need to add some parameters to your plug-in configuration as
well: account number, password and the like.

Copyright 2011 Enterprise jBilling Software Ltd. Page 54

Now to the real testing: submitting a payment to the gateway. Normally, you will be
working with credit cards, so click on 'Payments' → 'Credit Card'. (ACH or other payment
methods follow the same procedure, just with a different payment type).

Select the customer to create the payment for, and just keep following the normal steps
to submit a payment. Just make sure that the 'Process real-time' check-box is selected,
otherwise the payment will be entered without sending it to the payment gateway
through your plug-in.

What should you expect? It is up to the payment gateway, not to jBilling. It is common
for gateways to provide test accounts and a set of credit card numbers that you can use
and expect a specific response. Others choose to determine the response from the
amount that is passed. It varies from gateway to gateway.

Deciding on a payment method
Before a payment can be submitted to a payment gateway for processing, jBilling
needs to determine how is that the customer is going to pay. The short common answer
is by credit card, but there are many other payment methods that can be used for
automatic electronic payments.

The key concept for this plug-in type, is that there is a step in the billing process
where the system determines the payment method to use for the customer being
processed. That step is designed as a plug-in to allow companies to add new logic to
this.

The default plug-in type is BasicPaymentInfoTask. It will fetch the customer's credit
card or ACH information depending which one of them as the flag 'Use for automated
payments'. It does filter credit cards that are not valid (expired, for example), to avoid
sending request to the gateway that are known failures.

The basic contract to follow when implementing your own type, is to return a
PaymentDTOEx object with the payment method initialized. You can return null if the
customer does not have any suitable payment method.

The wide spread usage of credit cards as payment methods makes this plug-in category
an unlikely candidate for custom implementations. Example requirements that would
lead to one are: customers in different geographical locations should use different
payment methods; prioritize one payment method over another one, such as ACH to
credit cards if the customer has both, etc.

Asynchronous payment processing
Asynchronous payment processing is an advance deployment feature that allows large
number of payments to be batch processed. You would only need to use this feature if
you have so many payments to process that you need to send more than one at a time
to one or more payment gateways.

The typical scenario is that you have a daily billing process with automated payment
processing. Some of your customers are being processed every day, and yet getting all
the payments done takes too long. Theoretically, there is no problem as long a the
payments get done before the next billing process takes place. In our example that is 24
hours.

Copyright 2011 Enterprise jBilling Software Ltd. Page 55

Yet, that would mean continuous payment processing 24x7 and even that could not be
enough if the payment load is too big.

Starting on jBilling 1.0.8, the billing process does not process payments itself. It
calculates and generates the invoices and then 'stacks' a payment request. It is now up
to another process to pick up these requests and interact with the payment gateways.
The payment process runs independently of the billing process, and it does so in a way
that can spawn several concurrent processes.

This multi-processing capability allows you to configure jBilling to do multiple payment
submissions simultaneously. There are many configuration options that let you tell
jBilling exactly how is that you want to interact with your payment gateway/s.

Still, your payment gateway has to support this. Can you payment gateway receive more
than one request from you at a time? That is something you will need to find out. And if
so, how many? 2, 5 or more? Gateways can restrict the number of concurrent requests,
and most probably will do so. Otherwise, they can be flooded with requests from just a
few companies in a short period of time.

Another option for simultaneous payment processing is to have more than one account
with different (and even the same) payment gateway. You can then submit only one
payment request at a time for each of your accounts, but since you have more than one,
you effectively process more than one payment simultaneously.

The previous two options are not exclusive of each other. You can also send many
requests to many payment gateways: jBilling let's you configure your payment
processing in a way that you let you scale up without limits.

In this section, we will go over these options, and also review a plug-in category that
provides the ultimate flexibility for asynchronous payment processing.

Configuration
The payment processing is implemented in jBilling through the usage of Spring
message driven pojos (MDP). Each bean is an independent payment processor, by
default jBilling comes with just one bean configured. This bean will start processing
payments from the queue as soon as the billing process queues one payment request.

To add more beans, you will need to modify some configuration files. The key file to look
at is jbilling/conf/jbilling-jms.xml,in particular the following section:

 <bean id="processPaymentMDB"
class="com.sapienter.jbilling.server.payment.event.ProcessPaymentMDB"/>

Copyright 2011 Enterprise jBilling Software Ltd. Page 56

Sending more than one payment at once
increases the payment processing

throughput of jBilling enormously. Just
having two payments sent simultaneously

literally means getting your payment
processing done in half the time.

 <!-- Mapping of MDBs to queues/topics they listen to -->

 <!-- Queue Listeners -->

 <jms:listener-container connection-factory="jmsConnectionFactory">

 <jms:listener ref="processPaymentMDB"
destination="queue.jbilling.processors"/>

 <!-- <jms:listener ref="processPaymentMDB"
destination="jbilling.processors.queue" selector="entityId = 1" /> -->

 </jms:listener-container>

This is a configuration file from the Spring framework, you will find all the details on how
to configure MDP and JMS in general in the Spring documentation.

Here we can say that you can easily add more means to process payments. By doing
this, you will have many beans to process payments at the same time, but this alone
might not be enough. You might want to configure a particular bean to process some
type of payment only. This can be helpful for the cases mentioned before where a
payment gateway restricts the number of simultaneous requests it will accept from a
single account.

The scope of payment processing for a bean is narrowed in the selector tag. Here you
can enter a SQL-style statement that will be applied as a filter to the message the bean
will take for processing. By default, jBilling only exposes one field, entityId (which you
can see an example commented out in the original file).

Imagine that the payment requests are in a queue. Each
of them have a series of information fields needed for the
payment to happen: the amount, user id, invoice id, etc...
then each payment processing bean will start taking
these requests from the queue to get them processed.

If there are conditions stated in the selector section of
the bean, that bean will only take those requests from the
queue that satisfy the conditions.

If your jBilling installation is serving many companies, you can use the entityId field to
assign one or more beans to each company. Then each company can have its own
payment gateway account.

If you are assigning a payment processor to each customer by using the router payment
processor plug-in, you can use the field 'processor' as well. You'd do this because that
field is made available by the 'router asynchronous parameters' plug-in (see category
12).

In most situations, simply having two or three beans will solve your volume problems. If
your payment gateway accepts to process that number of payment simultaneously, you
configure this scenario very easily: add the new beans with just a name change and
keeping the message-selector empty.

If your scenario is more complex, and the beans need to evaluate more fields to pick the
right payment to process, you will need to develop your own asynchronous parameters
plug-in type.

Copyright 2011 Enterprise jBilling Software Ltd. Page 57

A request will never be
processed by more than

one bean, but many beans
can be processing

(different) requests at the
same time.

Adding new parameters for asynchronous processing
Any field present in the selector section needs to be added by a plug-in that implements
the category ID 12 (with the sole exception of entityId, as mentioned earlier).

Take a look to RouterAsyncParameters class. This works with the router payment tasks
to add the processor field. As you can see, this type of plug-ins will simply receive a
JMS message as a parameter. Your task then is to add more fields to this message.

Any field added here can be used as a filter in the SQL style statement present in the
selector for each bean.

When you create your own implementation of IAsyncPaymentParameters, you might
need to also have your own payment processor plug-in similar to the router processor.
This is true if your filter criteria requires a different processor to be used for a specific
MDP.

Copyright 2011 Enterprise jBilling Software Ltd. Page 58

Chapter 5

Billing Process plug-ins

Copyright 2011 Enterprise jBilling Software Ltd. Page 59

The billing process is the module that more heavily uses plug-ins. This comes as no
surprise, since this is the true core of a billing system. Those key points that can be left
open for future extension where identified and designed to use business rules plug-ins.

What should an invoice contain? Which orders should generate invoices? How the
various totals should be calculated? These and many key billing questions are answered
by independent classes, rather than be hard-coded.

In this section we will cover the plug-in categories related to the billing process and the
existing implementations available in the default distribution. It is a good idea at this
point to review the basics of jBilling's billing process by going to the user guide and
reading the chapter dedicated to it. You can't understand these plug-ins if you don't have
a clear picture of the sequence of events happening in the billing process.

Order filter
The order filer is a key component to the billing process. This object is called by the
billing process and decides if an order should generate an invoice or not. The
default implementation, BasicOrderFilterTask, considers the properties of the order: if
it is pre or post paid, the active since and until, when was the last time it generated an
invoice. All this in relationship with the date and period that the billing process is running
for.

This task might change the status of an order if the situation calls from it. For example, if
the active until has be reached and this is the last invoice that the order will generate.

This is not very common to extend or implement your own order filter. An example of an
extension is the class OrderFilterAnticipatedTask. This type considers another
order property to allow orders to generate invoices for some periods in advance.

Invoice filter
The invoice filter plays the same role in the billing process as the order's filer, but acting
on invoices. The billing process needs to know if an invoice should be carried over to
a new invoice. This object encapsulates the logic to make that decision..

The default implementation, BasicInvoiceFilterTask, blindly returns 'true' in all
cases. Since the filter is only called for invoices that have a balance (they are not paid
and balance is grater than zero), this will wok fine when you want to follow the policy of
having the last invoice to represent the total balance of a customer's account.

The other implementation is NoInvoiceFilterTask, which does the opposite: blindly
returns 'false' in all cases. This is useful when your company never wants an invoice to
get carried over to a newer invoice.

You could write your own implementation if you need additional logic in the decision of
carrying over an invoice. For example, if this should be done following some customer
preference.

Copyright 2011 Enterprise jBilling Software Ltd. Page 60

Invoice composition
Once the billing process has the orders and invoices to include in a new invoice, it just
has to create it. The main job here is to create the invoice lines, which have a
description, price, quantity and total.

The invoice composition plug-in will do just that, and the default implementation adds the
date ranges if the line is coming from a recurring order.

You might need some additional information in an invoice: some extra fields coming
from the order or even from another system external to jBilling. If that is the case, you
can do so as an invoice composition plug-in

Order period
This type of plug-ins are involved in the billing process once the order has been already
confirmed as one that will be generating and invoice. As we've seen earlier, this means
that the order filter plug-in has given the green light about this order inclusion in the
billing process.

We know then, that this order has to generate an invoice. What the billing process needs
to know now is what period of time is that the new invoice will get out of this order for
this particular billing process.

Let's see an example: There is a monthly order that has generated three invoices for the
first three months of the year. When April comes along, and the billing process runs:

● First, the order filer is called. It will determine that this order is to be included in
an invoice.

● Second, the order period is called. It will give the starting and ending date for the
period to include. In our example that will be April 1st (inclusive) and May 1st (not
inclusive) respectively.

The output of this plug-in category is two dates. It is assumed that the order in question
has to generate an invoice. The logic in this category of plug-ins is valuable only for
recurring orders, those that over their lifespans will generate many invoices. If the order
is a one-time purchase, the plug-in should return null for both dates.

The default implementation is BasicOrderPeriodTask, and it is rarely needed to extend
or modify it.

Order processing: totals and taxes
This plug-in category is not called by the billing process, unlike the previous ones in this
chapter. However, since orders play such a key role in the generation of invoices, it has
been included among them.

The order processing plug-in category is expected to take a 'raw' order straight from the
GUI and complete any missing values, such as the order line totals and the grand total
for the order.

The default implementation (BasicLineTotalTask) will go over the order lines,
calculating each total mostly by multiplying quantity times price. It will also consider

Copyright 2011 Enterprise jBilling Software Ltd. Page 61

percentage items, taking first those that are not taxes, and calculating percentage taxes
last (so they take into account all the previous items).

This plug-in category is a common source of custom plug-ins. This is usually done by
doing a new implementation and chaining the new plug-in type through the configuration
(the result is several plug-ins of the same category, but each with a different processing
order).

A good example is the VAT type (GSTTaxTask). It will take the order total and add a new
line to represent the value added tax. Since it needs the order total, it would have to
have a higher processing order than the BasicLineTotalTask. As you can see, you will
probably address your requirements by adding more types but keeping the default as the
first in the chain.

Still, since this is a good place to add tax related logic and this changes so much from
place to place, it is very much possible to use a complete new implementation and take
the default type only as an example.

Copyright 2011 Enterprise jBilling Software Ltd. Page 62

Chapter 6

Notification plug-ins

Copyright 2011 Enterprise jBilling Software Ltd. Page 63

Notifications
An important feature of jBilling is that it notifies customers of billing events, such as new
invoices, payment results, etc. That is key to help automate the billing cycle. The typical
way to notify is by email: it is free and wildly accepted.

When an notification is needed, the system will check your plug-in configuration to see
how that notification will be done. By default, the type configured will be
BasicEmailNotificationTask. This type sends an email to the customer.

There is another implementation, PaperInvoiceNotificationTask that generates a
PDF version an invoice. This is only used by the billing process for customers that have
selected 'paper' as an invoice delivery method.

Implementing new types of this category is relatively simple. The interface
NotificationTask only has one method: 'deliver'. You could create a new type to send
notification via telephone with an IVR, or by fax for example.

For the most part, jBilling is unaware of how the notifications are delivered to the end
customer. Just implementing a new type and configuring your account to use it would
change jBilling's notification method.

Payment gateway down alarm
Your integration with a payment gateway can represent a key area of your overall
system, it allows you to process payments in real-time. If a payment gateway is down,
your business can suffer. Since you can not process payments, you might not be able to
offer your services to new customer or sell on-line.

jBilling is sitting in between your business applications and the payment gateways. It
will be most probably the only component interacting with the gateways. Thus, it could
tell you if a gateways is down.

When a payment fails, the system will take a look to your plug-in configuration and find
the plug-in that can handle the failure and decide if to send an alarm email to the billing
administrator. The default type is ProcessorEmailAlarmTask.

There are two conditions for alarm to go off: the gateway is not responding (unavailable),
or the gateway has failed a number of payment requests in a row, within a period of time.

The first condition is simple and is is related to a network error. The second is to cover
situations where the gateway server does respond, but with an error that states that the
gateway is not available. If a gateway is failing all the payment requests, then it is not
working as expected.

To avoid having an email for each payment request where a gateway is unavailable (if
the gateway server goes down, it can take hours to be up an running again), this alarm
can be configured to send only one email over a period of time.

The following parameters are needed to configure the behavior of the alarm, they are
present as parameters to the plug-in:

failed_limit: number of payment requests that have to fail before the alarm goes off (see
second condition above).

Copyright 2011 Enterprise jBilling Software Ltd. Page 64

failed_time: amount of seconds where the number of failed requests have to happen.

time_between_alarms: number of seconds that have to pass in between emails reporting
an unresponsive gateway.

email_address: This is the address where the alarm emails will be sent. This is an
optional parameter, if not present, the email address for the company will be used (as
defined when the company was created).

This default implementation is usually enough. You could create new ones to use a
different type of notification method instead of emails, or to have different logic on when
an alarm should go off.

Copyright 2011 Enterprise jBilling Software Ltd. Page 65

Chapter 7

Interest plug-ins

Copyright 2011 Enterprise jBilling Software Ltd. Page 66

Interest and penalties
As part of the (typically) daily batch process, there is an 'interest evaluation process'.
This is an independent process that is meant to run once a day.

This process will take all the invoices that are past their due date and call a plug-in to let
it take action on them. That means that the actual logic to calculate an apply interests or
penalties is encapsulated into a plug-in.

The default type is BasicPenaltyTask. This task will take one parameter: item. The
value of the parameter has to be the id of an item that represents the penalty. The item
can have a flat price or a percentage price. A percentage price can be used to calculate
interests.

The plug-in will create a new purchase order for this customer, which will have the
specified item and the resulting amount. This new order is a one-time order, and it is
meant to be included in the next invoice.

This way, the customer will simply see an additional line in her invoice with some interest
charges. The invoice line will specify the invoice that was not paid on time, and the due
date of that invoice.

This type is fairly simple, considering the complexity that charging interest and applying
penalties can involve. Therefore, it is not uncommon to create custom types that takes
more variables into account for the calculations, such as time for example.

To implement your own, start by taking a look to the default. All in all, the contract for the
category is trivial: you get an invoice id as a parameter so the plug-in can analyze and
take whatever action it wants. Still, the default will show you some considerations to be
done, such as how to verify the outstanding balance of an invoice.

Copyright 2011 Enterprise jBilling Software Ltd. Page 67

Chapter 8

Internal events

Copyright 2011 Enterprise jBilling Software Ltd. Page 68

Introduction
Internally, jBilling has an event processing mechanism. For those familiar with patterns,
this is the Observer pattern. The basic idea is that when something happens (let's call
this an event), instead of writing right there all the logic for the consequence of that
event, we call another module with the event. It is that module that will take care of
calling all those that have 'subscribed' to the event, and take whatever action they want.

An example is when a payment fails. The payment processing module detects that a
payment has failed. There might be a lot of things to do because of this: send an email,
update the status of a customer, even add some penalty fees. The payment module will
simply store the result of the payment, that is its concern. Then, it lets the even
processing module know about a new event: a payment failed event. That is all, the
payment module can then ignore any ramifications of what to do when a payment fails.

There will be many other modules that have subscribed to this event: may be the
notification module, to send an email, may be many others. It will be relatively easy to
add a new subscriber to the event later on, or remove a subscriber if needed. We have
turned this into a configuration task, rather than a development task.

Plug-ins for internal events
What it's actually important about internal events, is that you can subscribe to them to
run your own logic. This, of course, is done with plug-ins.

Let's take a look to a simply sequence diagram that shows how your code can get called
for any event happening in jBilling:

The main event processor of jBilling will always call a 'perennial' subscriber for all
internal events. This subscriber is called the 'internal event processor'; the first thing it
does is to look for any plug-ins present for the category 17. This is, any plug-ins that
implement the interface 'IInternalEventsTask'.

Copyright 2011 Enterprise jBilling Software Ltd. Page 69

Illustration 2: The sequence of calls that get your plug-in called

If there is none, that is fine, these are not required plug-ins. If there are any plug-ins for
this category, it will create an instance of each of them an query if the plug-in is
interested on the event that is being processed. If so, the plug-in is called passing the
event as a parameter.

Universal events-to-rules plug-in
If you wish to run business rules in response to events, you can use the existing
InternalEventsRulesTask plug-in for simple cases, instead of creating your own rules-
based plug-in from scratch. See chapter 8 for more information on rules and the
InternalEventsRulesTask.

Creating your own event processing plug-in
There are two steps to create a plug-in that process events:

1. Identify the event you want to process.

2. Write the plug-in

Events
To identify the event that you need to 'intercept', first you need to know how an event
looks like in jBilling.

An event is just a class that carries the data of a real billing event. This class needs to
implement a very simple interface:

public interface Event {

 public String getName();

 public Integer getEntityId();

}

As you can see, the interface is mostly a way to group all the events in a single type.
Let's see an example implementation:

Copyright 2011 Enterprise jBilling Software Ltd. Page 70

For the most part, all we have here is an implementation of the Event interface that can
hold a payment object (PaymentDTOEx). Any subscriber receiving this event knows that a
payment failed, and from the payment class can find out all about the payment.

List of events
When you are considering writing a internal event processor plug-in is because there is
some business requirement that you need to address. If you can do so or not will
depend mostly if there is an internal jBilling event that can help you.

jBilling did not start from scratch with an internal event design. This was added for the
1.0.7 release. Since then, more and more business logic are implemented using events,
which means that more events are actually created (and made available to you to write
plug-ins). Events were eventually made 'public' by hooking them to plug-ins in version
1.1.0.

The list of events is still fairly short. Also, more events are added continuously. The
following list is accurate at the time of this writing, but most probably already incomplete
by new additions. A good way to find out all the jBilling events is by finding all the
implementations of the interface Event. Any good IDE will provide this list easily.

NewActiveUntilEvent

Type: Orders

Trigger: When an order has been updated and the order's 'active until' was changed.

Current use: To identify if an order is being canceled, and may be apply cancellation
fees. Also, to change the subscription status of a customer, from active (recurring order
is on-going, then it gets a new active until) to 'pending unsubscription'.

Copyright 2011 Enterprise jBilling Software Ltd. Page 71

NewStatusEvent

Type: Order

Trigger: When an order has changed status.

Current use: When an order goes to 'finished' status, the customer's subscriber status
changes from 'Pending Unsubscription' to 'Unsubscribed'.

PeriodCancelledEvent

Type: Order

Trigger: When there is a new active until for the order, that is earlier than the previous
one.

Current use: There is a plug-in that evaluates this event through rules (see the rules
chapter). The final outcome can be a new order with cancellation fees,as a penalty for
an early cancellation of a contract.

PaymentFailedEvent

Type: Payment

Trigger: A payment processing plug-in returns 'failure' as the result of payment request to
a payment gateway.

Current use: To take the customer's subscriber status to 'Pending Expiration'.

PaymentProcessorUnavailableEvent

Type: Payment

Trigger: A payment processing plug-in failed to connect to a payment gateway (or a
request timed out).

Current use: To evaluate an alarm due to the payment gateway being down.

PaymentSuccessfulEvent

Type: Payment

Trigger: A payment processing plug-in returns 'success' as the result of payment request
to a payment gateway.

Current use: To set the customer's subscriber status back to 'active'.

ProcessPaymentEvent

Type: Payment

Trigger: The billing process needs a payment to be processed.

Copyright 2011 Enterprise jBilling Software Ltd. Page 72

Current use: This event is processed by the event manager asynchronously. It allows the
detachment of the billing process from a time consuming task that relies on third party
system: credit card processing.

EndProcessPaymentEvent

Type: Billing process.

Trigger: All the payment requests for the current billing process have been posted.

Current use: Since the billing process finishes much earlier than the payment
processing, it is necessary to signal the end of payment processing to update the
'payments end time' column of the billing process record.

NoNewInvoiceEvent

Type: Billing process.

Trigger: During the billing process, if a user did not get any invoices.

Current use: To handle transitions of the customer's subscription status when it is
'Pending Unsubscription'.

NewQuantityEvent

Type: Order

Trigger: When an order line's quantity is updated in an order, including lines added or
deleted.

Current use: For the refund and cancellation fees plug-ins. Also used by provisioning
plug-in.

OrderToInvoiceEvent

Type: Order

Trigger: When an order is added to an invoice.

Current use:

NewUserStatusEvent

Type: User

Trigger: When a user's status is changed, either through the aging process or manually.

Current use: Plug-in for blacklisting users that become suspended or higher.

SubscriptionActiveEvent

Type: Provisioning process

Copyright 2011 Enterprise jBilling Software Ltd. Page 73

Trigger: During the provisioning process when an order's activeSince date becomes
earlier than or equal to the current date (or null) and has order lines with 'inactive'
provisioning statuses. Also triggered when an order is created with an activeSince date
earlier than or equal to the current date (or null).

Current use: External provisioning of services.

SubscriptionInactiveEvent

Type: Provisioning process

Trigger: During the provisioning process when an order's activeUntil date becomes
earlier than or equal to the current date and has order lines with 'active' provisioning
statuses.

Current use: External provisioning of services.

NewCreditCardEvent

Type User

Trigger Add new Credit Card details for the user or update existing details

Current use Plug-ins of type IexternalCreditCardStorage that provide integration
with 3rd party secure Payment Gateway to store sensitive financial
information externally. On this event, user's credit card can be stored
externally and obscured from the local database.

AchUpdateEvent

Type User

Trigger Add new ACH Payment information for the user or update an existing one

Current use Plug-ins of type IexternalCreditCardStorage that provide integration
with 3rd party secure Payment Gateway to store sensitive financial
information externally. On this event, user's ACH payment details can be
stored externally and obscured from the local database.

AchDeleteEvent

Copyright 2011 Enterprise jBilling Software Ltd. Page 74

Type User

Trigger Delete the existing ACH Payment information for the user

Current use Delete user's ACH payment details that may be maintained with an
external payment gateway so as to avoid it being used for payment from
the Gateway

The above list only tells you the available events and when they are triggered. But, how
do you use an event? Keep in mind that and event is only a mean for transporting
information, a message to you. It is not meant to do anything on its own. The business
logic related to the data in the event should be placed in a plug-in.

Implementing your own plug-in
Like any plug-in in jBilling, a plug-in to process internal events has to extend the abstract
class PluggableTask and implement and interface. In this case, the interface is
IInternalEventsTask:

public interface IInternalEventsTask {

public void process(Event event) throws PluggableTaskException;

public Class<Event>[] getSubscribedEvents();

}

The method getSubscribedEvents() should return a array of the events that you want
your plug-in to be called for. This is just a way of subscribing to those events. If the event
in question is part of this list, then process() is called. In other words,
getSubscribedEvents() will be called for every event, while process() only for those
events that you actually want to get called.

Example: “Hello Payment”
Let's write a plug-in that writes to the log file every time a payment is processed:

public class HelloPaymentTask extends PluggableTask implements
IInternalEventsTask {

private static final Class<Event> events[] = new Class[]
{ PaymentFailedEvent.class, PaymentSuccessfulEvent.class };

 private static final Logger LOG =
Logger.getLogger(HelloPaymentTask.class);

Copyright 2011 Enterprise jBilling Software Ltd. Page 75

 public Class<Event>[] getSubscribedEvents() {

 return events;

 }

 public void process(Event event) throws PluggableTaskException {

 if (event instanceof PaymentFailedEvent) {

 PaymentFailedEvent failed = (PaymentFailedEvent) event;

 LOG.debug("The payment " + failed.getPayment() +

" failed");

 } else if (event instanceof PaymentSuccessfulEvent) {

 PaymentSuccessfulEvent success =

(PaymentSuccessfulEvent) event;

 LOG.debug("The payment " + failed.getPayment() +

" succeeded");

 } else {

 throw new PluggableTaskException("Cant not process event "

 + event);

 }

 }

}

Our plug-in is subscribed to two events, one for each payment outcome (we are leaving
processor unavailable out, since this event happens then the payment could not be
processed at all).

We processed is called, we have to verify for what event we've been called. After that,
we'll have an instance of the event with all the information need for any action we want
to take. In this case, the key piece of data is the payment object. Our plug-in only prints
the payment to the log file.

Configuration

We have the plug-in, we just need to let jBilling now about it with a couple of
configuration steps. First, we need to register the plug-in as a new type:

insert into pluggable_task_type values(

 50, 17,

 'com.sapienter.jBilling.server.payment.tasks.HelloPaymentTask', 0);

Copyright 2011 Enterprise jBilling Software Ltd. Page 76

Then, from the jBilling GUI, click on 'System' then on 'Plug-ins' to add your new plug-in.

Copyright 2011 Enterprise jBilling Software Ltd. Page 77

Chapter 9

Rules and BRMS

Your business rules in action

Copyright 2011 Enterprise jBilling Software Ltd. Page 78

Extending through rules

Introduction
This section is dedicated to extending jBilling by adding new business logic through a
rule-based engine and BRMS (business rules management system). It continues on the
on-line guide called 'Getting Started – BRMS'. If you have not read that guide yet, do so
before continuing. You can find it here.

An important goal of the 1.1.0 release was to add substantial more flexibility to jBilling.
Flexibility is key for a billing system, because billing is so tied to the way a company runs
its business (business rules).

jBilling integrates with a rules engine to achieve this leap in business rules flexibility. All
this chapter is dedicated to 'rules', so it is best if you are familiar with rules, rules engines
and BRMS. The accepted 'birth' of rules systems came with the design of the 'RETE
algorithm' by Dr. Charles L Forgy in 1974. This is basically a pattern matching algorithm
that simplifies writing business logic and executes very efficiently. To learn more about
RETE, read this article.

Instead of having hard wired business rules in the core of the billing system, you can
neatly write business rules in a more natural language (rather than in programming
language like Java). You then store the rules, so it easy to manage them. With some
configuration of the right plug-ins, jBilling will go to that rules storage and execute your
rules.

Drools
The rules-engine we will be using is Drools, also known as JBoss Rules. This is an open
source implementation of the RETE algorithm, but it doesn't stop there. It comes with a
full BRMS, you can use a GUI to create edit and manage your rules.

Drool is a feature rich, complex product. We will not try to re-write its documentation
here. Instead, we are going to focus on how Drools and jBilling interact with each other.
You can find Drools official documentation here.

The most important Drools features, from the jBilling perspective, are:

● Robust, proven implementation of the RETE algorithm.

● BRMS

● Ability to express rules in different ways: technical rules (plain text) and business
rules (using a GUI with drop down values) among others.

● Supports the creation of a Domain Specific Language (DSL), so we can write
rules using something closer to a natural language, rather than having to deal
with objects, attributes and methods.

Copyright 2011 Enterprise jBilling Software Ltd. Page 79

http://labs.jboss.com/drools/documentation.html
http://en.wikipedia.org/wiki/Rete_algorithm
http://www.jbilling.com/?q=node/381

Rule based plug-ins
All the interaction between jBilling and rules happens through plug-ins. In fact, the base
class that all plug-ins have to extend (PluggableTask), has been added support for
rules so any plug-in can now ask for and process rules.

Four useful 'rules based' plug-ins are:

RulesItemManager: This is a rule-based implementation of a new plug-in type:
IitemPurchaseManager. The default implementation is BasicItemManager. When
using this one (the default), jBilling behaves just like it used to before 1.1.0. When the
RulesItemManager is configured, you are enabling rules for item relationships. More on
this plug-in later.

RulesMediationTask: This plug-in belongs to a new type IMediationProcess and it is in
charge of the mediation process. This is a specific module that is out of scope for this
document, it has been documented in the “jBilling for Telcos” document.

RulesPricingTask: This is an optional plug-in, that implements the new type IPricing. If
present, it enables complex pricing policies based on rules. This class is covered in
detail later in this document.

InternalEventsRulesTask: This plug-in allows rules to run in response to a configurable
set of internal events. This class is covered in detail later in this document.

Deployment
You will be writing your rules, usually using Drools BRMS GUI. Then Drools will compile
them and make them available to jBilling. We call this “rules deployment”. There are a
few different options for rules deployment.

Copyright 2011 Enterprise jBilling Software Ltd. Page 80

The first one is to tell jBilling to ask the BRMS for the rules on real-time. When a jBilling
plug-in needs to process the rules, it can use a URL where the BRMS is listening so the
binary version of the rules are transferred using the HTTP protocol.

The alternative is to save the binary version of the rules in a directory, and tell jBilling
about this directory so it simply reads the rules from there.

Any of the plug-in classes listed earlier, and indeed, any plug-in that uses rules in jBilling,
will take as plug-in parameters a series of values that will determine how jBilling expects
the rules to be deployed. In fact, jBilling will be using Drools Rule Agent to find the rules,
and will only pass the plug-in parameters to the Rule Agent. This means that the
documentation about the Rule Agent applies to these parameters. At the time of this
writing, section 9.4.4.1 of the Drools documentation goes over these parameters. Let's
take a look to some of them of special importance:

● file: This is a space-separated list of files - each file is a binary package as
exported by the BRMS. You can have one or many. The name of the file is not
important. Each package must be in its own file. Please note that if the path has
a space in it, you will need to put double quotes around it (as the space is used
to separate different items, and it will not work otherwise). Generally spaces in a
path name are best to avoid.

● dir: This is similar to file, except that instead of specifying a list of files you
specify a directory, and it will pick up all the files in there (each one is a package).
Each package must be in its own file.

● url: This is a space separated list of URLs to the BRMS which is exposing the
packages (see below for more details).

Default value

If the plug-in has not parameters present, then it will use a default value. This is the
value of the property 'base_dir” of the jBilling.properties file, plus the directory 'rules'
appended. For example, for the following entry in jBilling.properties:

base_dir=/usr/jBilling

The following parameter will be passed to the Rule Agent for the rules location:

dir=/usr/jBilling/rules

File deployment

After building the package (by clicking on 'Build package'), you can download a binary
file with the package rules compiled. You only have to place this file in a directory that is
visible to the Rules Agent, using the 'file' or 'dir' plug-in parameters.

This is usually a good option for a production deployment. It is faster and more robust
than a URL deployment.

URL deployment

On the other hand, it is work to download and put the file in the right directory every time
you make a modification to the package. Specially if you are writing new rules, or making
changes. For a development deployment, it is better to use a URL deployment.

The BRMS exposes the binary of a package on the following URL:

Copyright 2011 Enterprise jBilling Software Ltd. Page 81

http://<server>/drools-jbrms/org.drools.brms.JBRMS/package/<packageName>/<packageVersion>

You can use “LATEST” for the package version and the latest version will be taken. This
comes very handy for a development environment: when you change any rules, you only
need to compile the package. jBilling will use this new version the next time it needs
rules for that plug-in.

Rules cache

Certain operations can involve many plug-ins, and some of these can be rule-based.
Creating an order from the API could be one of these cases. Rule-based plug-ins can be
involved in the item management and in determining the price of each item in the order.
If every time a rule-based plug-in is called the rules are loaded, this can have a severe
impact on performance.

There is a property in jBilling.properties that allows you to turn on and off a cache of
rules:

cache_rules=true

For a production deployment, the default 'true' is typically correct. For a development
deployment, you probably want this to be 'false', then it is easy to make changes to rules
and see the changes immediately.

Note that the cache does not know (or check), if the rules have changed and the cache
should be refreshed. It reads the rules the first time and keeps them in memory
thereafter. The only way to invalidate the cache from the GUI is to make a change to the
configuration of a plug-in. When, for example, a parameter of a rule-based plug-in
changes, the cache for that plug-in is invalidated.

Creating new rules

Anatomy of a rule
A rule is a simple condition with a consequence. Since we are using Drools, we will use
its own rules language. An example rule is:

when

customer is in Canada

then

add GST tax

There is a condition after the keyword 'when', and a consequence if the condition is met
after the keyword 'then'. This is all very clear, but Drools does not have any idea about
jBilling, its data model or how to, for example 'add GST tax' which is clearly an operation
that jBilling would have to do.

This brings us to two key elements of a rule:

● The data model

● Helper services

Copyright 2011 Enterprise jBilling Software Ltd. Page 82

The data model is needed to write the 'when' condition. The concept of a 'customer' and
its address is foreign to Drools, so it has to be added at one point by jBilling. Any data
available to write rules conditions needs to be explicitly exposed to Drools by jBilling.

Then there is the helper services, in the example 'add GST tax'. When the condition is
satisfied, Drools will call this helper service and it is the service that will take care of the
actual addition of this tax. Of course, this service is just part of jBilling.

You can see that Drools and jBilling need to be well integrated for the rules to be useful.
Drools provides the ability to write, store manage and execute the rules, while jBilling will
provide the data model and helper services.

This all happens in a jBilling plug-in: all the data is added to the Drools 'working memory'
and the Drools is told to execute the rules. jBilling does not know about the rules
themselves: how many there are, where they are, etc.

As part of a plug-in, a typical rule-based implementation will have an inner class
dedicated only to act as a helper class to enable jBilling 'actions' in the rules. So the 'add
GST tax' will translate to a method in an inner class of a plug-in that takes care of calling
the right methods of other core classes.

Let's take a look to the previous rule, written as a 'technical rule':

when

ContactDTOEx(countryCode == "CA")

then

order.addItem(11)

Now we can see something more familiar to Java code. ContactDTOEx is a jBilling class,
and countryCode is one of its fields. The 'then' is just calling the method 'addItem' of the
'order' object with one parameter.

This rule would work for the RulesItemManager plug-in. You can see the following lines
of code in this plug-in that take care of making the contact information of the customer
available to Drools:

ContactBL contact = new ContactBL();

 contact.set(userId);

 rulesMemoryContext.add(contact.getDTO());

Later in the code, we will find the inner class 'OrderManager'. An instance of it with the
name 'order' is added as a global element for Drools. Now we can call a jBilling object
directly from a rule!

When working with the BRMS you need to let it know about all these objects. This is
important for it to make validations such as a typo on a class name. All you need to do is
to add a model to a package. You will upload the file 'jBilling.jar' for that model. This file

Copyright 2011 Enterprise jBilling Software Ltd. Page 83

has all the jBilling objects. This is a one time operation needed when you create a
package from scratch:

Rules for business users
Rules can externalize business logic so it is easy to change without having to actually
change jBilling. Editing, compiling and deploying rules is much easier than any changes
to Java code in jBilling. Rules are meant to be deployed on-the-fly in production without
downtime. Attempting the same with Java code is difficult to say the least.

All this is very good, but, wouldn't it be great if those creating and editing rules don't
have to be programmers? Business users, like marketing folks and product managers
should be able to work with rules without calling the IT deparment.

Business users can not deal with 'ContactDTOEx' and the like, they need something
closer to English. Drools has a good alternative with domain specific language (DSL).
With this, we can provide an English alternative that then gets translated behind the
scenes to the Java equivalent.

Remember that we started with our example rule with the condition “customer is in
Canada”, that later was written as “ContactDTOEx(countryCode == "CA")” We can
create a DSL sentence that will help here:

[when]Customer is in Canada=ContactDTOEx(countryCode == "CA")

Now business users will be able to use the GUI of the BRMS and simply select this
sentence from a drop down menu. Still, we don't want to have one of these sentences
for each possible country. We could end up with thousands of options in the drop down
menu! It is better to use variables:

[when]Customer country is {var}=ContactDTOEx(countryCode == "{var}")

Copyright 2011 Enterprise jBilling Software Ltd. Page 84

Which brings another problem. The user will need to know that CA is the code for
Canada. To fix this, you can setup an enumeration, which is another feature of Drools
BRMS. Take a look to Drools documentation for details.

jBilling comes with a simple DSL for each of the three packages. They are meant as
examples, rather than a final version:

Steps for rules adoption
We know what the goal is: to provide our business users with a good DSL that covers
most of their needs. To get there, we need to follow these steps:

1. Provide a plug-in that includes all the necessary data model into the working
memory, as well as the helper services.

2. Write some technical rules that cover all the use cases and scenarios that our
business rules will have to face.

3. Produce a DSL based on the technical rules that were tested in the previous
step.

These three steps will be performed by developers familiar with Java, jBilling and rules.
Business users will need to be involved to provide requirements and validate the results
in an iterative fashion.

Let's take the following requirement as an example:

“The system should automatically include taxes based on the customer's country of
residence”.

Step 1: Plug-in We know we need two things here, one is the address of the customer,
an another one is the ability to add new items to an order. If this wasn't already part of
the plug-in RulesItemManager, you could extend it and add this functionality to it.

Hopefully your needs are covered by the existing plug-ins. Otherwise, creating a new
one should not be of great difficulty for an experience Java programmer.
RulesItemManager for example, is only 250 lines of quite understandable code.

Copyright 2011 Enterprise jBilling Software Ltd. Page 85

Step 2: Technical rules You need to write an example technical rule that meets the
requirement. It does not matter how 'ugly' the rule looks, with text that is totally cryptic to
a business user.

Your technical rules should not be very verbose. If you find yourself writing many lines of
Java code for a condition, or for a consequence, then you need to work on taking that
code out of your rules. You could use functions to help you in some cases. Functions is
another of Drools features. There are cases where functions are the best way to go, to
do conversions for example. If your parameters are in seconds but you need to convert
to minutes and round that to the next integer, you could put that in a function.

Yet, you should rely on functions with caution. It is not a good idea to have the same
code duplicated in many functions across package rules, or to duplicate the code in
plug-ins. As a general rule, the best way to go is to put that code as a helper method on
your plug-in, typically in the helper inner class that provides services to the rules engine.

You can find the technical rule for the example requirement earlier in this chapter.

Step 3: DSL Once you have your technical rule working well, you can provide a natural
language version of it through DSL. This is probably the easiest of the three steps, and
the one that makes the business users the happiest. In many cases, it is as simple as
writing two or three lines of text:

[when]Customer country is {var}=ContactDTOEx(countryCode == "{var}")

[then]Add item {var} to order=order.addItem({var});

Try to keep your DSL in synch with what your business users really need. Having too
many sentences when only a few get used will defeat the purpose of the DSL.

Item relationship management

Overview
When an item is added to an order, the category under the interface
'IItemPurchaseManager' is executed. This means that you can execute rules when an
order is created and items are added to it, the same applies to the modification of an
order.

What kind of operations could you do with this category? When an item is being included
in an order, you get control of what is going to happen with rules. You can do nothing,
and let the item go into the order as normal. You can also prevent the item to get
included, switch it with another one, or include other items at the same time. These are
only a few options.

This category applies to how items relate to each other, as well as the behavior of items
in general. In theory, you could do practically anything you want by providing your own
plug-in. To stay within the expected scope of a plug-in of this type, try to only affect the

Copyright 2011 Enterprise jBilling Software Ltd. Page 86

way items get into the order. Imagine if your plug-in starts sending emails when a
particular condition happens, it'd be very confusion to figure out why the system is
sending emails at that point in time.

The default implementation for this category is BasicItemManager. This is not a rule-
based plug-in, and its functionality is limited to calculating the price of the order line
based on the quantity and price of the item. If the item is already in the order line, it will
update the quantity rather than include another line with the same item.

The interesting plug-in is RulesItemManager, because it is rules based. Let's take a
closer look to it:

RulesItemManager

This is the standard rule-based implementation of this category. It is important to note
that it is actually extending BasicItemManager. This means that behavior from this plug-

Copyright 2011 Enterprise jBilling Software Ltd. Page 87

in, like increasing the quantity instead of having the same item in two order lines, also
apply.

Take a look to the interface, IItemPurchaseManager. You can see how simple it is, it
only has one method to add an item, that's all. Its basic responsibility is to add the item
to the order by creating (or updating) an order line

As mentioned before, any rule-based plug-in will have to provide two things: the data
model and helper services. Let's see how this plug-in handles that:

Data Model
Order Lines: All the order lines present in the order are included in the working memory.
This means one instance of the object OrderLineDTOEx per order line. This is helpful for
conditions like: “only include this item if it is not already there”, or to put limits “this
promotional item can sell only 10 per customer”.

User record: The record of this user, including the ID, user name, etc. This is an instance
of UserDTOEx, you can also see it as the data present in the table 'base_user'. You can
add conditions to specific customers: “Add item '10% discount' to customer Acme'.

Primary contact: This is the address of the customer, represented by the object
ContactDTOEx. You can write rules that affect customers depending on their address:
country, state, zip code, etc.

Subscriptions: The previous classes involved in the data model belonged to the standard
jBilling domain model. They are the same classes you will find when using the API, and
they are very close to the related database tables structure.

For subscriptions, we created a new 'convenient' class, only for the purpose of
facilitating the writing of rules. Let's take a look to this class:

This is an inner class of the plug-in. It is a clear example of what is called 'flattening the
model'. The data that is exposed to the rules engine needs to be 'flat', rather than adding

Copyright 2011 Enterprise jBilling Software Ltd. Page 88

a network of objects for evaluation in the working memory. This makes for clear rules
and takes full advantage of the great speed of the RETE algorithm.

You will have an instance of Subscription per order line, for each order that is recurring
and active:

● Only order that are active are included. This only refers to the status of the order,
it does not depend on the 'active since/until' of the order. Those dates are added
as part of the Subscription object.

● Orders with a one-time period are not included.

With these object available, you can write rules like “only add this item, if the customer is
subscribed to this other item'.

Helper Services
Helper services for this plug-in are grouped by an inner class, OrderManager:

The name of the global that is actually an instance of this class is 'order'. The important
methods in this class are:

addItem: This simply adds and item to the order. You can specify the quantity, otherwise
it defaults to zero.

percentageIncrase: This method takes two parameters: the first is the item to add to
the order. The second one is also an item ID. The percentage price of this second item
will be taken to modify the amount of the order line. For example, you sell the item
'Subscription A' with a price of 50$, and you have another item that is 'Special Discount
10%' with an percentage price of -10. If you call this method you will be given the 10%
discount on the price of the item 'Subscription A'.

removeItem: Call this method to remove an item from the order.

Copyright 2011 Enterprise jBilling Software Ltd. Page 89

Example
The following rule will replace item 16 by time 14 only if the customer is not subscribed
to item 12

rule "switch example"

 when

$line : OrderLineDTOEx(itemId == 16, $quantity : quantity)

not Subscription(itemId == 12)

 then

order.removeItem(16);

order.addItem(14, $quantity);

end

Pricing

Overview
Pricing, some times called 'rating', happens when the system needs to give a price to an
item. This could be very straight forward, like the price of a book. If that is the case, the
basic that you get from jBilling's GUI would be enough. You could even give a special
price for a customer, or a partner. Now, if you are going to have more complex
conditions, like a bundle of books, or quantity discount, then you need to use a rule-
based plug-in for pricing.

The plug in category is for the interface IPricing. Unlike many other plug-in categories,
this one is optional. If the system finds a plug-in of this category present in the
configuration, it will use it. If not, it will simply take the simple pricing of the item, just like
it did before the release of version 1.1.0.

Before starting using a rule-based plug-in for pricing, it is important to make sure you
really need it. Sometimes, your needs can be better met with an 'item management'
plug-in (see the previous section). The following is an example use-case: Trend is
launching its service in Florida. There are going to be many parties and speeches, but
also a 10% discount for banners sold to customers in Florida for the next month.

There are two ways to tackle this:

● Use the same item 'banners', and through a pricing rule, give it a special price to
all customers with a Florida address.

● Create a new item 'banners – Florida promotion', with a default price 10% lower
than the standard price. Use an item management rule to switch the standard
item banner for this new item when the customer buying is from Florida.

In both cases you achieve the same thing, which is to transparently give a special price
to those meeting the conditions. In the first case you save on the number of items, but
creating a report on how well the promotion worked will be more difficult because the
same item was sold to all customers. In the second case you end up with more items,

Copyright 2011 Enterprise jBilling Software Ltd. Page 90

which can be confusing if sales are done my human agents, but it will be easier to track
down how much Trend sold under the promotion.

The choice becomes clear when the factors that affect the pricing are not related to the
customer's account, like the address for example. When external factors related to the
event that generated the sale are in play, then pricing rules become more useful. The
typical example is a phone call. The price of a call will depend a lot on factors like, where
the phone call originated and what the destination was.

We are getting into the territory of the mediation module, which is out of scope for this
document. Let's focus on the pricing default rule-based plug-in:

RulesPricingTask

The interface that represents this plug-in is very simple, with just one method to return
the price of an item. The parameters are quite self explanatory: item ID, user ID and so
on. The one parameter that needs special attention is the array of objects. These
objects will take the 'external factors' mentioned earlier. The plug-in RulesPricingTask
does not have any logic based on this array, all it does with those objects is to put them
in the working memory so they are available for writing 'when' conditions on your rules.

Copyright 2011 Enterprise jBilling Software Ltd. Page 91

A good example for the usage of PricingField parameters is the mediation
component. It will take all the fields from the record is processing and pass it all the way
to the pricing plug-in. This component its documented in the 'jBilling Telco' document.

Data Model
Pricing fields: This object represents an external value. By default, it is used only by the
mediation process. Thus, the details of this class have been documented along with the
mediation module.

User record: The record of this user, including the ID, user name, etc. This is an instance
of UserDTOEx, you can also see it as the data present in the table 'base_user'. You can
add conditions to specific customers: “Set price of 90$ for item 10 only to customer
Acme”.

Primary contact: This is the address of the customer, represented by the object
ContactDTOEx. You can write rules that affect the pricing of items based on the
customer's address: country, state, zip code, etc.

Additional parameters: An instance of the class PricingManager is also present in the
working memory. This class will help you with four fields for the 'when' side of your rules:
currency, item, default price and user id. See the details of this class in the next section.

Helper Services
Helper services allow consequences for your rules after the 'then' keyword. For this plug-
in they are provided by the inner class PricingManager:

The name of the global is “manager'. For example, this would set a price:

when

Copyright 2011 Enterprise jBilling Software Ltd. Page 92

....

then

manager.setPrice(10);

It is not surprise that what you can do with this class is to set a price. There are two
ways to do this:

● Flat price: This is just a number to assign the price of the item. For convenience,
it is provided in two types, one taking and integer and another one taking a
double as a parameter. The method is 'setPrice'.

● Percentage: This will take the default price as a base, then add the percentage
specified as a parameter to this method. If the default price of an item is 5, and
you call 'manager.setPercentage(50)', the result will be a price of 7.5. Once
again, the same method is provided taking a double or an integer as a
parameter, just to simplify the code in your rules.

Example
The following rule reads: give a special price of 9 cents on item 14 to any customer that
belongs to an organization that starts with 'Acme':

rule "Acme deal"

 when

PricingManager(itemId == "14")

ContactDTOEx(organizationName matches "Acme.*")

 then

manager.setPrice(0.09);

end

Universal events-to-rules plug-in
If you want to have rules run in response to internal events, rather than take the time to
write your own rules-based internal events listener plug-in, the
InternalEventsRulesTask plug-in may be sufficient for your needs.

Unlike other rules-based plug-ins, it doesn't provide any helper services for the rules to
use. However, it can still be used for manipulating orders and invoices when the events it
subscribes to occur. For example, an order line can be removed just before an order is
applied to an invoice.

Rules are configured and deployed like any other rules-based plug-in. The events it
subscribes to are configured in the following XML file, found in the server conf directory:
jBilling-internal-events-rules-tasks.xml.

Copyright 2011 Enterprise jBilling Software Ltd. Page 93

Event Subscription Configuration
Our example rule will be used to remove an order line from an order just before it is
invoiced. To accomplish this, the OrderToInvoiceEvent is the event the plug-in will
listen to. Below is an example configuration (<beans> tag attributes omitted for clarity):

<beans ...>

 <!-- List of internal events that a task subscribes to. -->
 <util:list id="invoiceEvents">
 <value>com.sapienter.jBilling.server.order.event.OrderToInvoiceEven
t</value>
 </util:list>

 <!-- Map linking pluggable task ids to an event list defined above.
-->
 <util:map id="internalEventsRulesTaskConfig">
 <entry key="540" value-ref="invoiceEvents"/>
 </util:map>

</beans>

First, a list given the id invoiceEvents is created containing the events the plug-in is to
subscribe to. It contains one value, the OrderToInvoiceEvent. Multiple lists can be
defined for multiple plug-ins

Second, a map of pluggable task ids → event list ids is defined. Each plug-in
configuration has one entry. Event lists can be reused for multiple plug-in configurations.
Here, a pluggable task with the id of 540 is configured to subscribe to the event list
defined above it. The plug-in's id is taken from the “System” → “Plug-ins” GUI
configuration screen.

Rules
The InternalEventsRulesTask plug-in inserts the received event object, plus the
publicly accessible objects the event contains, into the rules working memory.

In our example case, we can expect the OrderToInvoiceEvent to be inserted, as well
as the OrderDTO it holds. In the simple example rule below, any items with id 1 will be
deleted when an order's create date is earlier than 1st July, 2009. This could be useful for
removing discounts from new invoices when a promotion ends, for example.

rule 'Modify order'
when
 OrderToInvoiceEvent()
 order : OrderDTO(createDate < "01-Jul-2009")
then
 // delete order lines with item id 1
 for (OrderLineDTO line : order.getLines()) {
 if (line.getItemId().equals(new Integer(1))) {
 line.setDeleted(1);
 }
 }
end

Copyright 2011 Enterprise jBilling Software Ltd. Page 94

	Chapter 1
Architecture
	The jBilling engine
	Architecture Overview
	A tiered approach
	Overview
	Client tier
	Server tier
	Database tier

	Business Rules Plug-ins
	Rules engine integration
	Class parade
	Types
	Processing flow

	Chapter 2
Reports templates
	Introduction
	What is a report?
	Report Parameters
	GSP Template Page
	Internationalization (i18n)

	Example New Report
	Define the report in the database
	Adding Report Files

	Chapter 3
Business Rules Plug-ins
	Why plug-ins?
	The business rules plug-in architecture
	How does it work
	Core Driven
	Event Driven Plug-ins
	Schedule Driven or Scheduled Plug-ins
	Simple Scheduled Tasks
	Cron Scheduled Tasks

	Plug-in categories
	Plug-in types
	Creating your own plug-ins
	Creating your own Scheduled Plug-in

	Chapter 4
Payment plug-ins
	Integrating with payment gateways
	Introduction
	The PaymentTask interface
	Implementation responsibilities
	Example
	Testing

	Deciding on a payment method
	Asynchronous payment processing
	Configuration
	Adding new parameters for asynchronous processing

	Chapter 5
Billing Process plug-ins
	Order filter
	Invoice filter
	Invoice composition
	Order period
	Order processing: totals and taxes

	Chapter 6
Notification plug-ins
	Notifications
	Payment gateway down alarm

	Chapter 7
Interest plug-ins
	Interest and penalties

	Chapter 8
Internal events
	Introduction
	Plug-ins for internal events
	Universal events-to-rules plug-in
	Creating your own event processing plug-in
	Events
	List of events
	Implementing your own plug-in
	Example: “Hello Payment”

	Chapter 9
Rules and BRMS
	Extending through rules
	Introduction
	Drools
	Rule based plug-ins
	Deployment

	Creating new rules
	Anatomy of a rule
	Rules for business users
	Steps for rules adoption

	Item relationship management
	Overview
	RulesItemManager
	Data Model
	Helper Services
	Example

	Pricing
	Overview
	RulesPricingTask
	Data Model
	Helper Services
	Example

	Universal events-to-rules plug-in
	Event Subscription Configuration
	Rules

